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Non-Technical Summary

Nestedness is a feature often observed in real networks, including financial ones. The
main characteristic of a nested network is the presence of generalists – i.e., agents that
interact with many counterparties – and specialists, who mainly interact with generalists.
In a perfectly nested network, the neighbors of a node are always a subset of – that is,
they are "nested" in – the neighborhood of the nodes with a higher degree. The con-
cept of nestedness has proved to be relevant for economic analysis, given its predictive
power for many economic phenomena, such as firm survival, industry location, and eco-
nomic growth. In this paper, we assess the nestedness in two Brazilian financial networks:
the bank-firm credit network and the interbank network. We compute the nestedness for
both networks using one of the metrics used to quantify it, the nestedness metrics based
on overlap and decreasing fill (NODF). We compute also the individual nestedness con-
tribution (INC) of the nodes (banks and firms). Applying machine learning techniques
(random forest, XGBoost, and Shapley values) to assess the determinants of the INC, we
conclude the INC of lenders is mainly correlated to their degree (i.e., their number of
counterparties), while the INC of borrowers does not have a clear main driver. Moreover,
we show nodes with a higher INC are also those that would cause more damage to the
network if they were hit by a shock, represented here by partial/complete depletion of net
worth. However, nodes with higher INC are not necessarily the most vulnerable to shocks
on the network.
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Sumário Não Técnico

O aninhamento (nestedness) é uma característica frequentemente observada em redes
reais, inclusive financeiras. A principal característica de uma rede aninhada é a pre-
sença de generalistas – ou seja, agentes que interagem com muitas contrapartes – e
especialistas, que interagem principalmente com generalistas. Em uma rede perfeita-
mente aninhada, os vizinhos de um nó são sempre um subconjunto do – ou seja, estão
"aninhados" no – conjunto de vizinhos dos nós com maior grau. O conceito de anin-
hamento provou ser relevante para a análise econômica, dado seu poder preditivo para
muitos fenômenos econômicos, como sobrevivência de firmas, localização de indústrias
e crescimento econômico. Neste artigo, avaliamos o aninhamento em duas redes finan-
ceiras brasileiras: a rede de crédito banco-firma e a rede interbancária. Calculamos o
aninhamento para ambas as redes usando uma das métricas usadas para quantificá-lo, a
nestedness metrics based on overlap and decreasing fill (NODF). Calculamos também a
individual nestedness contribution (contribuição de aninhamento individual – INC) dos
nós (bancos e firmas). Aplicando técnicas de aprendizado de máquina (random forest,
XGBoost e valores de Shapley) para avaliar os determinantes da INC, concluímos que
a INC dos concessores de crédito é determinada principalmente pelo seu grau (ou seja,
seu número de contrapartes), enquanto o INC dos tomadores de crédito não tem um de-
terminante principal claro. Além disso, mostramos que nós com maior INC também são
aqueles que causariam mais danos à rede se fossem atingidos por um choque, represen-
tado aqui por um esgotamento parcial/completo do patrimônio líquido. No entanto, nós
com maior INC não são necessariamente os mais vulneráveis a choques na rede.
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1 Introduction

One of the most pervasive and studied patterns observed in complex networks is nestedness. It
refers to a hierarchical organization of the network, where the set of neighbors of a node is a subset of
the neighborhood of the nodes with a higher degree – or conversely, a superset of the neighborhood of
the nodes with a lower degree. A nested network is composed of generalists – that interact with many
counterparties – and specialists, who interact mostly with generalists. Therefore, specialist-specialist
interactions are quite rare (Bascompte et al., 2003).

A simple illustration of a perfectly nested network is depicted in Figure 1. We portray a bank-
firm credit network. Each row (column) corresponds to a firm (bank). Banks (firms) are labeled as
B1,..., B6 (F1,..., F7). A colored square represents a loan extended by the bank in the corresponding
column to the firm in the corresponding row. The two types of nodes – banks and firms – are ranked
in descending order according to the degree (firms from top to bottom, banks from left to right). The
banks connected to a given firm are also connected to firms with a higher degree. For instance, bank
3 is connected to firm 5 (the blue square in the figure). It is also connected to firms above firm 5 (with
a higher degree), but it is not connected to firms below firm 5 (with a lower degree). Similarly, firms
connected to a given bank are also connected to banks with a higher degree (e.g., firm 5 is connected
to banks on the left of bank 3, but not to banks on the right of bank 3). The more generalist (specialist)
banks correspond to the columns located in the left (right) of the figure. Similarly, the more generalist
(specialist) firms correspond to the rows located in the top (bottom) of the figure.

B1 B2 B3 B4 B5 B6

F1

F2

F3

F4

F5

F6

F7

Figure 1: Example of a perfectly nested bank-firm credit network. The connection between bank 3 and firm 5 is repre-
sented by the blue square. Bank 3 is connected only to the firms above firm 5, as they have a degree higher than that of
firm 5. Similarly, firm 5 is connected only to the banks on the left of bank 3, i.e., those with a degree higher than that of
bank 3.

Similarly, we can represent a perfectly nested unipartite network. In Figure 2, we show a
perfectly nested interbank network from the lenders’ point of view. If the link representing the loan
granted by B4 to B6 is removed, the network becomes also perfectly nested from the borrowers’ point
of view.
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B5 B3 B4 B2 B1

B4

B6

B7

B4 B6 B7

B5

B3

B2

B1

Figure 2: Top: example of a perfectly nested interbank network from the lenders’ point of view. Bottom: matrix repre-
sentation of the graph with (left-hand side – LHS) and without (right-hand side – RHS) the link depicted in red in the top
panel. In the LHS panel, lenders (borrowers) are displayed in columns (rows). In the RHS panel, it is the opposite. In the
RHS case, the network is perfectly nested also from the borrowers’ point of view.

There is not a consensus on how nestedness should properly be quantified. For this reason, there
are many metrics to measure nestedness being used simultaneously, such as the nestedness metrics

based on overlap and decreasing fill (NODF) (Almeida-Neto et al., 2008) and the spectral radius

(Staniczenko et al., 2013).1 Nestedness is closely related to other network topological properties.
Some studies (Abramson et al., 2011; Jonhson et al., 2013) confirmed that nestedness is significantly
correlated with disassortativity. Lee et al. (2016) point out that nestedness is a generalization of the
core-periphery structure. Payrató-Borras et al. (2019) propose that the most heterogeneous networks
in terms of degree distribution are also the most nested ones.

Despite nested networks having been discovered (Patterson and Atmar, 1986) and mainly stud-
ied in ecology (Bascompte and Jordano, 2013), nestedness has also been reported in economic net-
works. Examples include country-country trading relationships (De Benedictis and Tajoli, 2011),
manufacturer-contractor networks (Saavedra et al., 2009), country-product export networks (Tac-
chella et al., 2012), and interbank networks (König et al., 2014). The concept of nestedness has
proved to be relevant for economic analysis, given its predictive power for a plethora of economic
phenomena. Assessing the interactions between designer and contractor firms in the New York City
garment industry, Saavedra et al. (2011) show firm’s survival probability decreases as its nestedness
contribution increases. Bustos et al. (2012) show nestedness in industrial ecosystems is quite stable,
and hence it predicts the appearance and disappearance of individual industries in each location. The
nestedness of world trade networks plays an important role in the prediction of countries’ growth

1To more details, see, for instance, Payrató-Borràs et al. (2020) and Mariani et al. (2019), Section 3.1.
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trajectory (Cristelli et al., 2017; Tacchella et al., 2012).

The purpose of this paper is to assess the nestedness of the Brazilian financial system. We
compute the nestedness of two financial networks – the interbank network and the bank-firm credit
network – using quarterly information from March 2012 through December 2015. Moreover, we
apply the methodology developed by Saavedra et al. (2011) to compute the individual nestedness
contribution (INC) of banks and firms in both networks. The INC of a given node is computed by
comparing the nestedness of the network when the interactions of this node are randomized. In Figure
3, we show a simple example to explain this concept. Suppose we want to compute the INC of the
node in the column highlighted in green in the original network (left-hand side of the figure). On the
right-hand side of the figure, we show possible randomization of the node links. The original links
are deleted, and the node is randomly connected to the nodes in the rows, keeping the same number
of connections. Such randomization is performed as many times as possible. The INC of the node
is given by comparing the average nestedness of the network when its links are randomized to that
of the original network. If the average nestedness increases when the node links are randomized, its
INC is positive, being negative otherwise (more details in Section 3.1).

       

       

       

       

       

       

       

       

       

       

       

       

 

Figure 3: Example of link randomization in order to compute the individual nestedness contribution (INC) of a given
node (corresponding to the column highlighted in green in the l.h.s. chart).

After computing the INC of the nodes, we perform two other exercises. In the first one, we
apply machine learning techniques (random forest, XGBoost, and Shapley values) to identify the de-
terminants – among a set of financial and topological variables – of the INC. In the second one, using
only the interbank network, we assess the correlation between INC and two systemic risk measures
presented in Alexandre et al. (2021): the systemic impact (SI) and the systemic vulnerability (SV) of
the banks. While the former refers to the loss caused by a shock in the bank to the whole system, the
latter measures the loss suffered by the bank in case of a shock in the system.
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This study is related to the literature on the role of topological features in identifying systemi-
cally important banks (Alexandre et al., 2021; Ghanbari et al., 2018; Kuzubas et al., 2014; Martinez-
Jaramillo et al., 2014). Our main conclusions are the following: i) the degree is the main determinant
of the INC of lenders in both networks – banks in the bank-firm network and lending banks in the
interbank market. On the other hand, there is not a clear main driver of the INC of borrowers. The
importance of the features in determining the INC of borrowers is distributed much more evenly and
depends on the network; and ii) in the interbank network, INC correlates positively to SI. Thus, nodes
that contribute to the nestedness of the network are those that would cause more damage to the net-
work if they were hit by a shock. Also, nodes with higher INC are not necessarily the most vulnerable
to shocks on the network. A positive correlation between INC and vulnerability is observed only
when the lenders’ INC is considered.

This paper proceeds as follows. Sections 2 and 3 discuss, respectively, the data set and method-
ological issues. In Section 4, we bring the general results concerning the computation of nestedness
and INC, as well as the analysis concerning our two exercises: the determinants of the INC and the
correlation between INC and systemic risk. Finally, final considerations are presented in Section 5.

2 The data set

Using several unique Brazilian databases which comprises supervisory and accounting data, we
extract quarterly information from March 2012 through December 2015 (16 periods) and build two
networks: the bank-bank (interbank) network and bank-firm bipartite network.

The interbank network comprises all types of unsecured financial instruments registered in the
Central Bank of Brazil (BCB). Credit, capital, foreign exchange operations, and money markets are
among the main types of financial instruments. Different custodian institutions register and control
these operations: Cetip2 (private securities), the BCB’s Credit Risk Bureau System – SCR3 (credit-
based operations), and the BM&FBOVESPA4 (swaps and options operations).

2Cetip is a depositary of mainly private fixed income, state and city public securities, and other securities. As a central
securities depositary, Cetip processes the issue, redemption, and custody of securities, as well as, when applicable, the
payment of interest and other events related to them. The institutions eligible to participate in Cetip include commercial
banks, multiple banks, savings banks, investment banks, development banks, brokerage companies, securities distribution
companies, goods and future contracts brokerage companies, leasing companies, institutional investors, non-financial
companies (including investment funds and private pension companies) and foreign investors.

3SCR is a very thorough data set that records every single credit operation within the Brazilian financial system worth
200BRL or above. Up to June 30th, 2016, this lower limit was 1,000BRL. Therefore, all the data we are assessing have
been retrieved under this rule. SCR details, among other things, the identification of the bank, the client, the loan’s time
to maturity and the parcel that is overdue, modality of loan, credit origin (earmarked or non-earmarked), interest rate, and
risk classification of the operation and the client.

4BM&FBOVESPA is a privately-owned company that was created in 2008 through the integration of the Sao Paulo
Stock Exchange (Bolsa de Valores de Sao Paulo) and the Brazilian Mercantile & Futures Exchange (Bolsa de Mercadorias
e Futuros). As Brazil’s main intermediary for capital market transactions the company develops, implements and provides
systems for trading equities, equity derivatives, fixed income securities, federal government bonds, financial derivatives,
spot FX, and agricultural commodities. On March 30th, 2017, BM&FBOVESPA and Cetip merged into a new company
named B3.
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We compute the net financial exposures taking into account financial conglomerates or indi-
vidual financial institutions that do not belong to conglomerates (classified as "b1", "b2", or "b4" in
the BCB’s classification system5), removing intra-conglomerate exposures. We exclude institutions
with negative equity. Financial institutions’ equity was retrieved from https://www3.bcb.gov.br/

ifdata.

The bank-firm network is bipartite, i.e., considers only loans granted by banks to non-financial
firms listed on the Brazilian stock exchange (BM&FBOVESPA). Information on firms’ equity was
retrieved from the Economatica database. Using the SCR information, we identified the loans granted
by financial institutions for each of these firms. As in the interbank network, we include in the bank-
firm network financial institutions with positive equity and classified as "b1", "b2", or "b4". Some
statistics of both networks are presented in Tables 1 and 2.

Table 1: Summary statistics of the bank-firm network.

Quarter-year N. of banks N. of firms Density Avg. weighted degree* Avg. net worth*
01-2012 72 304 0.0709 830.1 4079.5
02-2012 73 305 0.0700 854.5 4152.5
03-2012 73 302 0.0685 899.2 4244.0
04-2012 73 312 0.0685 943.6 4305.4
01-2013 72 315 0.0692 970.8 4090.7
02-2013 70 315 0.0697 1038.0 4288.6
03-2013 66 315 0.0723 1052.0 4408.4
04-2013 65 317 0.0731 1175.6 4418.6
01-2014 71 320 0.0695 1250.6 4505.5
02-2014 73 316 0.0681 1297.1 4608.2
03-2014 70 316 0.0706 1349.5 4588.4
04-2014 67 322 0.0753 1417.9 4409.9
01-2015 70 319 0.0711 1461.3 4482.1
02-2015 70 318 0.0714 1481.1 4618.7
03-2015 70 310 0.0725 1558.2 4718.0
04-2015 71 310 0.0737 1598.1 4465.7
*: in BRL million.

5See https://www.bcb.gov.br/content/estabilidadefinanceira/scr/scr.data/metodologia.pdf.
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Table 2: Summary statistics of the interbank network.

Quarter-year N. of banks Density Avg. weighted degree* Avg. net worth*
01-2012 128 0.0843 2747.6 3516.2
02-2012 128 0.0850 2940.7 3598.1
03-2012 130 0.0825 3142.7 3620.7
04-2012 130 0.0802 3257.2 3690.7
01-2013 130 0.0823 3604.7 3609.1
02-2013 128 0.0837 3401.2 3610.6
03-2013 127 0.0796 3474.4 3728.4
04-2013 127 0.0777 3557.1 3840.9
01-2014 130 0.0773 3551.3 3724.5
02-2014 130 0.0773 3433.9 3830.6
03-2014 130 0.0781 3756.4 3908.8
04-2014 129 0.0732 3970.7 3878.8
01-2015 129 0.0757 3966.3 3943.7
02-2015 130 0.0743 3819.8 4071.2
03-2015 128 0.0781 4023.9 4127.6
04-2015 126 0.0792 4111.5 4181.9
*: in BRL million.

3 Methodology

3.1 Measuring nestedness and INC

In this paper, we quantify nestedness using the NODF (Almeida-Neto et al., 2008). The nest-
edness of the network N is defined by the following equation:

N =
∑

C
i< j Mi j +∑

R
i< j Mi j[

C(C−1)
2

]
+
[

R(R−1)
2

] . (1)

In Eq. 1 above, C (R) is the number of nodes of the type displayed in columns (rows). Note
that these numbers can be different in bivariate networks, but will necessarily be equal in univariate
networks. For every pair of nodes i and j, Mi j = 0 if ki = k j, and Mi j = ni j/min(ki,k j) otherwise,
where ki is the number of interactions of node i, and ni j is the number of interactions in common
between i and j. N varies between 0 and 1, where 1 designates a perfectly nested network.

The INC is quantified following the methodology developed by Saavedra et al. (2011). The INC
of node i is given by the following equation:

ci =
(N −⟨N∗

i ⟩)
σN∗

i

, (2)
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where N is the network’s observed nestedness, ⟨N∗
i ⟩ is the average nestedness across an ensemble

of random replicates within which the interactions of node i have been randomized, and σN∗
i

is the
standard deviation of N∗

i . We randomize the interactions of a node following the null model specified
in Bascompte et al. (2003), generating 1,000 random replicates. The randomization of the interactions
of a given node i works as follows: we cancel some link between i and another node, and then we
connect i with another node with which i does not have a connection.

We innovate in the computation of the INC by considering the different roles a node can play
in a network. In bivariate networks, nodes play only one role. For instance, in a bank-firm credit
network, banks are always lenders and firms, borrowers. However, in univariate, directed networks,
our innovation can be quite useful. For example, in interbank networks, all nodes are of the same type
(banks), but a given node i can be lender and borrower at the same time. If this is the case, we will
compute its lending INC INCL and its borrowing INC INCB. The former is obtained by randomizing
only its outgoing links, which represent loans granted by i, and keeping its incoming links – loans
received by i – fixed. The latter is computed in a similar fashion, through the opposite operation.

3.2 Machine learning techniques

After computing the INC for our data instances using the methodology presented in Section 3.1,
we assess its determinants employing three machine learning techniques: random forest (RF), XG-
Boost (XB), and Shapley values. While RF and XB are ensemble learning methods that can be used
for both classification and regression, Shapley values are employed to provide a better interpretability
of the results.

Random forest and XGBoost. In this study, both RF (Breiman, 2001) and XB (Friedman et al., 2000)
are used for regression tasks. The aim is to estimate a predicted output ŷi from an observed output yi

and a vector of explanatory variables Xi. RF reports the average prediction of several decision trees.6

The main advantage of using an RF rather than an individual decision tree is avoiding over-fitting
problems. When used to solve regression tasks, decision trees are called regression trees. Departing
from the root node, which encompasses the whole data set, the algorithm runs by answering true/false
questions till it reaches the leaf node, with the output. The intermediate nodes are called interior

nodes. Figure 4 depicts a simple regression tree. There are only three explanatory variables: x1, x2,
and x3. The predicted output can assume four values: y1, y2, y3, and y4. The value of the predicted
output for a given data instance depends on whether or not the value of the explanatory variables is
above a specific critical value.

6On decision trees, see, e.g., Breiman et al. (1984).
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x1 > xC
1

y1 x2 > xC
2

y2 x3 > xC
3

y3 y4

no yes

no yes

no yes

Figure 4: A simple example of a regression tree, with the root node (yellow), the interior nodes (green), and the leaf nodes
(blue).

XB is an optimization algorithm that creates a more efficient predictor model from an ensem-
ble of weak predictors (usually, decision trees). This is done by increasing the performance of the
predecessor predictor through the inclusion of a new estimator – i.e., a new combination of explana-
tory variables and corresponding weights. The algorithm assigns weights to all explanatory variables,
which are used as input by the first weak predictor. If the output is predicted wrong by the weak
predictor, the weight of the corresponding explanatory variables is increased. In the next boosting
stage, these variables are fed to the second weak predictor, and so on. The final predictor is the result
of an ensemble of these weak predictors.

The process through which the models are trained and validated is known as repeated k-fold

cross-validation. The data set – the output to be predicted and a set of potential explanatory variables
– is split into k different parts (folds). k−1 folds are used in the training of the model. The remaining
fold is used to test the efficiency of the model. Score measures (e.g., the root mean squared error
– RMSE – and the R2) are computed from the predicted output ŷi and the observed output yi of the
remaining fold. The process is repeated until each fold is used as the testing data set. Therefore, the
number of regressions run is equal to the number of repetitions times k.

We tune the number of estimators of both methods – the number of decision trees in each forest
in RF and the number of boosting stages to be performed in XB. We vary the number of estimators
within a grid of ascending values and compute the average score across the regressions for each of
these values. In this paper, this grid is 30, 50, 70, 100, 300, and 500. The number of estimators is set
when the increase in the value does not improve the performance of the method, as measured by the
score measure. In this study, the number of estimators was set as 50 in both methods. The other main
parameters are reported in Table 3.

13



Table 3: Main parameters: Random forest and XGBoost.

Parameter Value
Random forest:
Minimum number of samples required to split 2
Minimum number of samples of a leaf node 1
Fraction of of features to consider when looking for the best split 1
XGBoost:
Maximum depth 6
Learning rate 0.3
Fraction of columns sampled for each tree 1
Fraction of observations sampled for each tree 1

Shapley values. Shapley values, an approach that originated from the coalition games theory (Shap-
ley, 1953; Shoham and Leyton-Brown, 2008), allows for better interpretability of machine learning
predictors. It provides information on the magnitude, as well as the sign (positive or negative), of
the features’ importance to the output. In this study, we use the SHAP (SHapley Additive exPlana-
tion) framework (Lundberg and Lee, 2017) to compute Shapley values. In this framework, there is an
explainer model g using a set of M features as inputs aiming at predicting an output. The predicted
value for a given data instance is given by

g(z′) = φ0 +
M

∑
i=1

φiz′i, (3)

where z′i is a binary variable indicating whether feature i was included in the model or not. The
SHAP value φi indicates the extent in which the feature i shifts the predicted value up or down from
a given mean output φ0. Lundberg and Lee (2017) showed, under certain properties (local accuracy,
missingness, and consistency), φi corresponds to the Shapley value of the game theory. The SHAP
value of feature i is represented by the following equation:

φi = ∑
S⊆M\{i}

|S|!(|M|− |S|−1)!
M!

[F(S∪{i})−F(S)]. (4)

Therefore, the SHAP value of feature i for a given data instance computes the difference be-
tween the predicted value of the instance using all features including i, F(S∪{i}), and the prediction
excluding feature i, F(S). A weight is applied to these values, which are summed over all possible
feature vector combinations of all possible subsets S.7

7For details on the calculation of SHAP values, see, e.g., Lundberg and Lee (2017) and Kalair and Connaughton
(2021).
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3.3 Topological variables

Among the potential determinants of the INC, there are some node specific topological vari-
ables. Here, we will give a definition of each one of them.

Degree. The degree is one of the simplest topological measures. This is the number of links of a
given node. For instance, in Figure 5, node E has degree 3, as it is connected to other three nodes
(D, G, and W). In directed networks, such as the interbank network, the in-degree is the number of
incoming links (i.e., the number of lending partners) of a given node. Similarly, the out-degree is the
number of outgoing links – the number of partners that node grants loans to. The weight used in the
weighted degree is the value of the loan. Therefore, the weighted in(out)-degree corresponds to the
total amount borrowed from (granted to) other nodes.

Figure 5: Stylized undirected network, in which the nodes are colored according to their core number: blue (3), green
(2), and red (1).

Core number. A subgraph (part of a graph) H is said to be a k-core subgraph of graph G if this is the
subgraph with the maximal number of nodes in which all nodes have a degree of at least k. Consider
all subgraphs a given node belongs to. The core number of this node will be the maximum k. A
simple example is depicted in Figure 5. The blue nodes compose a k-core with k = 3, as each blue
node is connected to at least three other blue nodes. Therefore, the core number of the blue nodes is
3. Similarly, the green nodes have a core number equal to 2 and the red ones, to one.

Closeness centrality. The shortest path distance between two nodes is the one in which the sum of the
weights of the links is minimized. Supposing all links have weight one, if two nodes are connected,
the shortest path distance between them is equal to one. The closeness centrality of a given node is the
average shortest path distance between this node and every other node in the network. For instance, a
simple computation would show the closeness centrality of node F in Figure 5 is 0.625.

Eigenvector centrality. Differently from the closeness centrality, the eigenvector centrality (Bonacich,
1972) is not related to shortest paths. It is given by the components of the main eigenvector of the
adjacency matrix representing the network. Let A = (ai, j) be the adjacency matrix of a graph. The
eigenvector centrality eci of node i is given by
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eci =
1
λ

∑
k

ak,i eck, (5)

where λ ̸= 0 is a constant.

PageRank. The PageRank centrality (Gleich, 2015) is an extension of the eigenvector centrality,
specially designed for directed graphs. The PageRank of a node is positively impacted by its in-
degree, but also by the in-degree of its direct and indirect neighbors, weighted by a damping factor.
The PageRank centrality pri of node i is given by

pri = α ∑
k

ak,i

dk
prk +β , (6)

where ak,i is the component of the adjacency matrix of the graph, α and β are constants and dk is
equal to the out-degree of node k if such degree is positive, or 1 otherwise.

Clustering coefficient. The clustering coefficient measures the degree to which nodes are prone to
cluster together. The clustering coefficient cci of a given node i is given by

cci =
1

ki(ki −1)∑
j,k

ai, ja j,kak,i, (7)

where ai, j is the component of the adjacency matrix of the graph and ki is the degree of node i.
Therefore, the clustering coefficient of a given node will be maximal (1) if it is connected to all
neighbors of its direct neighbors.

3.4 Systemic risk

Saavedra et al. (2011) show the nodes with higher INC are those whose removal leads to a
decrease in network persistence, as well as are the more vulnerable to extinction. That is, shocks
in strong contributors cause more damage to the whole network, and shocks in the network affect
mostly the strong contributors. We test this hypothesis using our data set. To this end, we compute
the systemic impact and systemic vulnerability – SI and SV, respectively (Alexandre et al., 2021) –
for the banks participating in the Brazilian interbank market, taking into consideration various levels
of the initial shock. Then, we compute the correlation between these measures and the banks’ INC.

Both SI and SV are computed following the differential DebtRank methodology (Bardoscia
et al., 2015).8 The exposure network of the interbank market is represented by A ∈ N×N, where N is
the number of banks and Ai j is the asset invested by i in j. At period 0, we impose an exogenous shock

8The rest of this subsection strictly follows Alexandre et al. (2021).
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on FI j, reducing its equity by a fraction of ζ . It will cause a subsequent loss Li j(1) to its creditors,
indexed by i, equal to Ai jζ . At period 2, j’s creditors will propagate this loss to their creditors in a
similar fashion, and so on. Formally, we have

Li j(t) = min
(

Ai j,Li j(t −1)+Ai j
[L j(t −1)−L j(t −2)]

E j

)
, (8)

Li(t) = min

(
Ei,Li(t −1)+∑

j
Ai j

[L j(t −1)−L j(t −2)]
E j

)
, (9)

in which t ≥ 0 and E j is financial institution (FI) j’s equity. Thus, when an FI j suffers an additional
loss equal to fraction ζ of its equity, it will impose a loss to its creditors that corresponds to ζ times
their exposures towards j. Observe equity positions as well as the exposure network are time-invariant,
i.e., they are taken as exogenous. The propagation considers stress differentials rather than stress
absolute values (hence the methodology’s name) to avoid double-counting.

Observe Li j cannot be greater than Ai j. It means that j cannot impose to i a loss greater than i’s
exposures towards j. When Li j = Ai j, j stops imposing losses on i. Moreover, Li cannot be greater
than Ei, i.e., i’s losses cannot be greater than its equity. When Li = Ei, i stops propagating losses to
other FIs.

The system converges after a sufficiently large number of periods T ≫ 1. Then we have the
final matrix of losses L j,ζ ∈ N×1, where Li,ζ

j is the total loss suffered by agent j after an initial shock
of size ζ on agent i. After repeating this process for the other FIs, we compute our two measures of
SR. The systemic impact (SI) of bank i is defined as

SIiζ =
∑ j

[
Li,ζ

j −Li,ζ
j (0)

]
∑ j E j

, (10)

where Li,ζ
j (0) = ζ E j if j = i and 0 otherwise. The systemic vulnerability (SV) is represented by the

following equation:

SViζ =
1
N ∑

j

L j,ζ
i −L j,ζ

i (0)
Ei

. (11)

Therefore, SIiζ measures the fraction of the aggregate FIs’ equity which is lost as a consequence
of an initial shock of size ζ at FI i’s equity. On the other hand, SViζ refers to the average i’s equity
loss when the other FIs are reduced by ζ .

17



As we are interested only in the losses caused by the contagion, we remove the initial shock
from the computation of the SR measures. Observe we also compute SIiζ for the FI that suffered the
initial shock. Due to network cyclicality, a shock propagated by a given FI can hit it back. For the
same reason, we include the loss imposed by an FI on itself in the calculation of SViζ .

4 Results

4.1 General results

Figure 6 depicts the NODF of the two networks (interbank and bank-firm) for different dates.
We can observe the bank-firm network always displays a higher NODF. Therefore, the hierarchical
organization typical of nested networks is more noticeable in the bank-firm network than in the in-
terbank network. The distribution of the INC through all dates is presented in Figure 7. In all cases,
most of the observations are higher than zero. While the INC is roughly represented by a normal
distribution in the case of the borrowers in both networks (borrower banks in the interbank network
and firms in the bank-firm network), the peakedness of the distribution is higher in the case of the
lenders. Moreover, the highest INC values are observed among the lenders. The exclusion of some of
them would lead to a higher decrease in the nestedness of the network.

Figure 6: NODF of the interbank and the bank-firm network.
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Figure 7: Histograms of the individual nestedness contribution (INC) for the interbank (left) and bank-firm (right) net-
work. Note the bin width is different for each chart.

The average INC for lenders (borrowers) in the interbank network is 1.51 (1.87). In the bank-
firm network, these values are 2.03 and 1.50, respectively. Saavedra et al. (2011) suggest groups with
lower INC have advantages over those with higher INC, in the sense the former increases its survival
probability at the expense of the latter. Therefore, lenders have an advantage over borrowers in the
interbank network, but the opposite occurs in the bank-firm network.

4.2 The determinants of the INC

In this section, we assess the determinants of the INC. The variables assessed as potential de-
terminants and their averages for each network are presented in Table 4. The weighted degree (wK)
corresponds to the total amount of loan granted (in the case of the lenders) or received (in the case of
the borrowers). We performed this analysis separately for banks and firms in the bank-firm network,
and lenders (INCL) and borrowers (INCB) in the interbank network. Recalling that, in the latter case,
both INCB and INCL will be computed for a given bank if it acts as lender and borrower. We applied
the two ML techniques – RF and XB – to predict the INC. We use a repeated k-fold cross-validation
with k = 5 and 10 repetitions, hence 50 regressions were run.
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Table 4: Potential determinants of the INC assessed in the study.

Variable Acronym Avg. bank-firm Avg. interbank
Degree K1 4.07 –
In-degree Kin2 – 1.05
Out-degree Kout2 – 1.07
Weighted degree wK1 6.00×108 –
Weighted in-degree wKin2 – 3.70×109

Weighted out-degree wKout2 – 3.76×109

Core number KC 4.36 1.22
Closeness centrality CC 1.06×10−2 4.02×10−1

Eigenvector centrality EC 3.60×10−2 7.15×10−2

PageRank PR 2.61×10−3 8.08×10−3

Clustering coefficient C2 – 3.41×10−1

Net worth NW 4.40×109 4.02×109

1: Only for the bank-firm network.
2: Only for the interbank network.

Bank-firm network In the bank-firm network, there are 1,126 data instances for banks (average of
70.4 per period) and 5,016 data instances for firms (average of 313.5 per period). We have obtained a
better performance – in terms of R2 – in predicting the INC of the banks (Figure 8). The main driver
of the INC of banks in the bank-firm network is the degree (Figure 9). The Shapley analysis (Figure
10) corroborates these results and shows this impact is positive.

Figure 8: R2 of the regressions for the bank-firm network.
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Figure 9: Importance of the features to the prediction of the INC for the banks in the bank-firm network obtained through
RF (left) and XB (right). Highly correlated variables (correlation higher than 0.9 to another explanatory variable) were
excluded.

Figure 10: Features’ average absolute SHAP. Red (blue) bars denote a positive (negative) correlation between SHAP
values and the feature values. The predicted output is the INC of banks in the bank-firm network obtained through RF
(left) and XB (right). Highly correlated variables (correlation higher than 0.9 to another explanatory variable) have been
excluded.

On the other hand, the INC of firms in the bank-firm network is driven by a mix of variables. The
main determinant is the core number, whose impact is positive (Figures 11 and 12). The PageRank
and the weighted degree are also important drivers of the INC of the firms, being the impact of the
former (latter) negative (positive).
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Figure 11: Importance of the features to the prediction of the INC for the firms in the bank-firm network obtained through
RF (left) and XB (right). Highly correlated variables (correlation higher than 0.9 to another explanatory variable) have
been excluded.

Figure 12: Features’ average absolute SHAP. Red (blue) bars denote a positive (negative) correlation between SHAP
values and the feature values. The predicted output is the INC of firms in the bank-firm network obtained through RF
(left) and XB (right). Highly correlated variables (correlation higher than 0.9 to another explanatory variable) have been
excluded.

Interbank network The number of data instances is 1,982 for borrowers and 1,944 for lenders
(average of 123.9 and 121.5 per period, respectively). Similar to the banks in the bank-firm network,
the R2 is higher for the lenders in the interbank network (Figure 13). Also in this case the INC of
the lenders is mainly determined by their degree (Figures 14 and 15). The importance of the features
in determining the INC of the borrowers is distributed much more evenly. Closeness centrality, in-
and out-degree, and clustering coefficient are among the main determinants (Figures 16 and 17).
Therefore, as a general result, we have that degree is the main driver of the INC of lenders in financial
networks, while the INC of borrowers has not a clear main determinant.
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Figure 13: R2 of the regressions for the interbank network.

Figure 14: Importance of the features to the prediction of the INC for lenders in the interbank network obtained through
RF (left) and XB (right). Highly correlated variables (correlation higher than 0.9 to another explanatory variable) have
been excluded.

Figure 15: Features’ average absolute SHAP. Red (blue) bars denote a positive (negative) correlation between SHAP
values and the feature values. The predicted output is the INC of lenders in the interbank network obtained through RF
(left) and XB (right). Highly correlated variables (correlation higher than 0.9 to another explanatory variable) have been
excluded.
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Figure 16: Importance of the features to the prediction of the INC for borrowers in the interbank network obtained through
RF (left) and XB (right). Highly correlated variables (correlation higher than 0.9 to another explanatory variable) have
been excluded.

Figure 17: Features’ average absolute SHAP. Red (blue) bars denote a positive (negative) correlation between SHAP
values and the feature values. The predicted output is the INC of borrowers in the interbank network obtained through
RF (left) and XB (right). Highly correlated variables (correlation higher than 0.9 to another explanatory variable) have
been excluded.

4.3 Nestedness and systemic risk

Saavedra et al. (2011) found nodes with a higher INC are those whose losses are more detri-
mental to the network’s persistence, as well as are the more vulnerable ones. We test this hypothesis
for the Brazilian interbank network. Here, the impact of the node on the network resilience and its
vulnerability will be measured, respectively, by the concepts of SI and SV, as detailed in Section 3.4.

Both SI and SV are computed for each node and for different levels of the initial shock ζ .
Moreover, we compute for each node its total INC INCT = INCB + INCL. Finally, we compute the
correlation between INC (INCT , INCB, and INCL) and systemic risk (SV and SI).

Considering the total INC, we did not observe the correlation between INC and vulnerability
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found by Saavedra et al. (2011) (Figure 18, left panel). The correlation between total INC and SV
is negative; moreover, it is not significantly different from zero for all levels of the initial shock ζ .
However, as in Saavedra et al. (2011), the INC is positively correlated to SI (Figure 18, right panel).
Therefore, the nodes that contribute the most to the nestedness of the network are also those that would
cause more damage to the network in case of suffering a shock. Also, this correlation is nonlinear
concerning ζ .

Figure 18: Correlation between INCT and SV (left) and SI (right). Except for the left panel, the correlation is statistically
different from zero for all levels of ζ (p-value < 10−100).

Decomposing the INC of the nodes considering both their roles – lender and borrower –, we
find that, while INCL and node vulnerability are positively correlated (Figure 19, left panel), this
correlation is negative in the case of INCB (Figure 20, left panel). In both cases, the absolute value
of the correlation increases with the size of the initial shock. Both INCL and INCB are positively
correlated to SI (Figures 19 and 20, right panel). While in the latter case the correlation increases
with ζ , in the former one this relationship is nonlinear, represented by an inverted U-shaped curve.

Figure 19: Correlation between INCL and SV (left) and SI (right). In both panels, the correlation is statistically different
from zero for all levels of ζ (p-value < 10−4).
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Figure 20: Correlation between INCB and SV (left) and SI (right). In both panels, the correlation is statistically different
from zero for all levels of ζ (p-value < 10−6).

5 Final considerations

In this study, we assessed the nestedness of the Brazilian financial system. To accomplish
this task, we relied on data from two Brazilian financial networks: the bank-firm network and the
interbank network. Besides computing the nestedness – measured here by the NODF – of the financial
networks for different dates, we also calculated the Individual Nestedness Contribution (INC), which
is a measure of the node contribution to the network nestedness. Then, we performed two exercises.
In the first one, we assessed the determinants of the INC. This task was performed separately for
banks and firms in the bank-firm network, and for lenders and borrowers in the interbank network. In
this analysis, we applied machine learning techniques: random forest, XGBoost, and Shapley values.

We concluded, in both networks, the INC of lenders – banks in the bank-firm network and lend-
ing banks in the interbank network – is mainly determined by their degree. On the other hand, there is
not a single main driver of the INC of borrowers. Core number, weighted degree, and PageRank are
the main determinants of the INC of firms in the bank-firm network. The INC of borrowers in the in-
terbank network is mainly driven by closeness centrality, weighted degree (in and out), and clustering
coefficient.

Finally, in the second exercise, we assessed the relationship between INC and systemic risk.
We computed the correlation between the INC and the systemic impact (SI) – the loss caused in the
network by a shock on the node – and systemic vulnerability (SV) – the loss suffered by the node
due to a shock in the network – in the interbank network. The INC is positively correlated to the
SI. Thus, nodes that contribute the most to the nestedness of the network are those that would cause
more damage to the network if they were hit by a shock. The correlation between the total INC and
SV is not significantly different from zero. However, while the lending INC is positively correlated
to SV, the correlation between the borrowing INC and SV is negative. It means that nodes with a
higher lending (borrowing) INC are more (less) vulnerable to shocks on the network. Furthermore,
the absolute value of this correlation increases with the size of the initial shock.
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This study contributes to the literature on identifying systemically relevant banks through the
analysis of the topological features of the financial network. We show the INC is correlated to the
systemic importance of banks. Shocks on banks with higher INC would cause a higher loss in the
whole system. Moreover, shocks on the system would cause more damage to banks with a greater
lending INC, while banks with a higher borrowing INC would be less impacted by such shocks. A
natural follow-up study of this paper would investigate the INC as a driver of the systemic importance
of the banks, in a model including other explanatory variables.
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