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Non-Technical Summary

Fixed income options are important assets because they allow agents to build speculative
or hedging strategies on interest rate. In Brazil, the main fixed-income option is the
IDI option that has as underlying the accumulated DI rate between the opening of the
position and the maturity. Several papers and studies discuss methodologies and formulas
to pricing the IDI option. In complex models, the computational solution to the problem
of pricing IDI options is a challenge. In this work, we propose an easy-to-implement
numerical technique that can be used to effectively evaluate the IDI options. The method
is based on expansions in cosine series. Through several examples, we illustrate the
versatility of the method as well as its computational speed.
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Sumário Não Técnico

Opções de renda fixa são ativos importantes porque permitem que os agentes es-
peculem ou façam hedge de taxa de juros. No Brasil, a principal opção de renda fixa é a
opção IDI, que tem como ativo objeto a taxa DI acumulada entre a abertura da posição
e o vencimento. Diversos trabalhos e estudos discutem metodologias e fórmulas de
apreçamento da opção IDI. Em modelos complexos, a solução computacional do prob-
lema de apreçamento de opções IDI é um desafio. Neste trabalho, nós propomos uma
técnica numérica de fácil implementação que pode ser usada para apreçar efetivamente
as opções IDI. O método é baseado em expansões em séries de cosseno. Por meio de
diversos exemplos, nós ilustramos a versatilidade do método bem como a sua rapidez
computacional.
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We develop analytical solutions for the characteristic function of the integrated short-term

rate process using the Fourier-cosine series. The method allows us to study the pricing of

Asian interest rate options for a broad class of affine jump-diffusion models. In particular,

we provide closed-form Fourier-cosine series representations for the price and the delta-

hedge of Asian interest rate options under the augmented Vasicek model. In a numerical

study, we show that Asian interest rate option prices can be accurately and efficiently ap-

proximated by truncating their series representations. The proposed procedure is calculated

fast and is superior in accuracy when compared to the existing numerical methods used to

price Asian interest rate options.

Keywords ou Palavras-chave: Interest rate derivatives, Fourier Series, Affine jump-

diffusion, COS method.

JEL Classification ou Classificação JEL: C02, G12.

The Working Papers should not be reported as representing the views of the

Banco Central do Brasil. The views expressed in the papers are those of the

author(s) and do not necessarily reflect those of the Banco Central do Brasil.

∗National Laboratory for Scientific Computing, LNCC. e-mail:allanjs@lncc.br
†National Laboratory for Scientific Computing, LNCC. e-mail:jack@lncc.br
‡Central Bank of Brazil e-mail:jose.valentim@bcb.gov.br

5



1 Introduction

The interest rate derivatives market differs across countries. The existing singularities in
the Brazilian market stirred the development of particular derivatives contracts. Among
them, we have a singular kind of interest rate option, namely the Interbank Deposit rate
Index (IDI) option. The IDI option is the main interest rate option offered by B3 (the
Brazilian stock exchange). It is of European type with cash settled at maturity. The
IDI is an index that accumulates from an initial value according to the daily Interbank
Deposit rate (DI rate).1 Note that the IDI is equivalent to a bank account. In a continuous
framework, the logarithm of IDI is a proxy for the integrated short-term rate.

Although IDI option is based on the integrated interest rate, we can view the DI
rate as its underlying. In this case, the IDI option is an Asian option since its payoff
depends on the path of the DI rate during the life of the option. Among other advantages,
Asian options reduce the risk of market manipulation of the underlying instrument at
maturity. Moreover, the averaging feature makes Asian options typically cheaper than
vanilla options. However, the pricing of Asian options is not easy even if we consider
simple frameworks such as Gaussian models.

In the last years, some interesting results about the IDI option pricing have been
developed. We can find closed-form expression for the IDI option price under the Vasicek
model (see Vieira and Pereira, 2000) and the CIR model (see Barbachan and Ornelas,
2003). Junior et al. (2003) and Almeida et al. (2003) assume that the short-term rate
follows the Hull and White (1993) model and obtain analytical solutions for the price of
IDI options. Barbedo et al. (2010) implement the HJM model to price IDI options. The
problem is numerically solved via a finite difference method in da Silva et al. (2016). The
authors show significant discrepancies in using the same interest rate model for discretely
and continuously compounded framework. An interesting result is provide by Genaro
and Avellaneda (2018), where the price of IDI option is sensitive to changes in monetary
policy. Baczynski et al. (2017) propose an alternative generic procedure to pricing IDI
options. An empirical and economical study regarding IDI options can also be found in
Almeida and Vicente (2012).

However, there is a lack in the literature of a general fast and accurate IDI op-
tion pricing method, which includes any affine jump-diffusion model. In this paper we
partially fill this gap by applying the COS method to the IDI option pricing problem.
The COS method is a new Fourier inversion method that has experienced an increase in
its usage. It is a procedure to calculate probability density functions and option prices
via Fourier-cosine series introduced in Fang and Oosterlee (2008). In several numerical
experiments, these authors show that the convergence rate of the COS method is exponen-

1The DI rate is an inter-bank one-day interest rate close-related with the Brazilian prime rate (Selic rate).
It represents the average rate of inter-bank overnight transactions in Brazil.
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tial and its computational complexity is linear. They also present evidences that the COS
method improve the speed of pricing plain vanilla and exotic options when compared to
traditional procedures.

Many works have recently extended the original COS model and applied it to solve
a variety of option pricing problems under classical models. Zhang and Oosterlee (2013)
show how to use the COS method to pricing arithmetic and geometric Asian options
under exponential Lévy processes. Zhang and Feng (2019) find the price of American
put options under the double Heston (1993) model using the COS method. Zhang et al.
(2012) analyze the efficiency properties of pricing commodity options with early-exercise.
Ballotta et al. (2018) employ the COS method in multivariate structural models to pricing
credit default using Lévy processes. Tour et al. (2018) apply the Fourier cosine expansion
method to calculate the price of several options under regime-switching models. Have and
Oosterlee (2018) use the COS method for option valuation under the Stochastic Alpha
Beta Rho (SABR) dynamics. The pricing of forward starting options with stochastic
volatility and jumps is considered in Zhang and Geng (2017). Crisóstomo (2018) compare
the CPU effort of the COS method against six other Fourier-based schemes and concluded
that it is notably the fastest.

Although the vast existing literature cited above and others not mentioned, to the
best of our knowledge there is no application of the COS method to interest rate deriva-
tives pricing. In this paper, we accomplish an original contribution to the pricing of Asian
interest rate options by applying the COS method to the IDI option. Besides describing
the procedure to find prices of Asian options, we provide delta-neutral strategies to hedge
the accumulated interest rate. In a simple numerical exercise, we assume a Gaussian pro-
cess to the short-term rate and compare the solution obtained by the COS method to the
closed-form expression given in Vieira and Pereira (2000). We find that the COS method
generates fast, accurate and stable prices.

In order to highlight the versatility of the COS method, we also study the pricing
and hedging of a digital option underlain on the IDI. Although this kind of option is not
currently offered by B3, this exercise shows that we can easily extend the class of payoffs
to encompass exotic options whose pricing, using traditional techniques, is surrounded by
more difficult numerical issues.

The paper is organized as follows. In Section 2 we review the Fourier-cosine expan-
sion method to recover density functions and calculate the price of financial derivatives.
In Section 3 we present the pricing problem and show some exponential affine character-
istic functions of integrated stochastic interest rate processes aimed to price derivatives of
Asian type with the COS method. We also present the cumulants of the random variables
and recover the associated probability density function with the series representation de-
rived from the Fourier Transforms. In Section 4 we show how the COS method can price
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IDI options. Hedging parameters is considered in Section 5. In Section 6 we analyze the
computational issues of the method and conclude the article in Section 7.

2 Fourier series method

Let xt be the price at time t of the underlying of a European call option maturing in t.
Denote by f the probability density function of xt . Thus, the price of this option at time 0
is

C(0, t) = E [g(xt)]

=
∫
R

g(x) f (x)dx,

(1)

where g is the discounted payoff function of the option and E is the risk-neutral expected
value. Truncating f in the interval [a,b] we have:

C(0, t)≈
∫ b

a
g(x) f (x)dx. (2)

The integral in (2) can be calculated by the COS method proposed by Fang and Oosterlee
(2008). The COS method is an interesting, fast and accurate derivatives pricing method
based on Fourier-cosine series. In what follows, we present the COS method and show
how to use it to pricing options.

Let

f : [0,π]−→ R

be an integrable function. Then the Fourier-cosine series of f is defined by

a0

2
+

∞

∑
j=1

a jcos( jξ ), ξ ∈ [0,π] (3)

where

a j =
2
π

∫
π

0
f (ξ )cos( jξ )dξ , j ≥ 0. (4)

(5)

For functions supported in any arbitrary interval [a,b], a change of variable ξ = π
x−a
b−a is

considered. Then, the Fourier-cosine series expansion of f , now defined in the interval
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[a,b] is

f (x) =
a0

2
+

∞

∑
j=1

a jcos
(

jπ
x−a
b−a

)
, (6)

where

a j =
2

b−a

∫ b

a
f (x)cos

(
jπ

x−a
b−a

)
dx, j ≥ 0. (7)

Let us assume that f ∈ L1(R). The approximation in the interval [a,b] of the coef-
ficients of the Fourier-cosine expansion of f is

a j =
2

b−a

∫ b

a
f (x)ℜ

(
ei jπ x−a

b−a

)
dx

=
2

b−a
ℜ

(
e−i jπ a

b−a

∫ b

a
f (x)ei jπ x

b−a dx
)
.

If f is the probability density function in (2), then

a j ≈
2

b−a
ℜ

(
e−i jπ a

b−a f̂
(

jπ
b−a

))
, A j, (8)

where f̂ is the characteristic function of xt , that is

f̂ (u) =
∫
R

eixu f (x)dx, (9)

which can be approximated in a truncated interval by

f̂ (u)≈
∫ b

a
eixu f (x)dx. (10)

Therefore, the approximation of f is given by the following Fourier-cosine series

f (x)≈ A0

2
+

n

∑
j=1

A jcos
(

jπ
x−a
b−a

)
, x ∈ [a,b], (11)

for an given n. Therefore,

C(0, t)≈ A0

2

∫ b

a
g(x)dx+

n

∑
j=1

A j

∫ b

a
g(x)cos

(
jπ

x−a
b−a

)
dx. (12)
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Hence, the series approximation of the option price is given by

C(0, t) =
A0B0

2
+

n

∑
j=1

A jB j, (13)

where the Ak coefficients are given by (8) and

B j =
∫ b

a
g(x)cos

(
jπ

x−a
b−a

)
dx, for j = 0,1, ...,n. (14)

The choices of the integration limits for the approximation were proposed in Fang
and Oosterlee (2008) as follows:

a = c1−L
√

c2 +
√

c4 b = c1 +L
√

c2 +
√

c4 (15)

with L = 10. The coefficients ck are the k-th cumulant of xt given by

cn =
1
ik

dk

duk h(u)|u=0 h(u) = lnE
[
eiuxt

]
. (16)

3 Problem statement and interest rate models

We assume an interest rate market with underlying probability space (Ω,F,P) equipped
with a filtration F = (Ft)t∈[0,T ] where P is the risk neutral measure. Let rt be the in-
stantaneous continuously compounding interest rate. We assume that rt follows a jump-
diffusion model given by

drt = µ(rt , t)dt +σ(rt , t)dBt +ZdN(λ t), (17)

where µ(rt , t) is the mean, σ(rt , t) is the volatility and Bt is the standard Wiener processes.
N is a pure jump process with constant positive intensity λ and jump amplitudes Z, which
are i.i.d. and independent of Bt .

According to the B3 protocols, the DI rate is the average of the interbank rate of a
one-day-period, calculated daily and expressed as the effective rate per annum.2 So, the
ID index (IDI) accumulates discretely, according to

yt = y0

t−1

∏
j=1

(1+DI j)
1

252 , (18)

where j denotes the end of day and DI j assigns the corresponding DI rate.
If we approximate the continuously DI rate by the instantaneous continuously com-

2See the B3 website: http://www.b3.com.br/en_us/.
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pounding interest rate, i.e. rt = ln(1+DIt), the index can be represented by the following
continuous compounding expression

yt = y0e
∫ t

0 rsds, (19)

where rt is given by (17).
The payoff of the IDI option maturing in t is

Ct = max(yt−K,0), (20)

where K is the strike price. Therefore, the price of this option is

C0 = E
[
e−

∫ t
0 rsds max(yt−K,0)

∣∣∣F0

]
. (21)

On the other hand, the payoff of a digital option is 1{yt>K}, which means that the
holder receives $ 1 at maturity if yt > K and zero otherwise. Thus, the price of a digital
option is given by

C0 = E
[
e−

∫ t
0 rsds

1{yt>K}

∣∣∣F0

]
. (22)

3.1 Characteristic function of integrated short-term rate

In order to price the IDI option we need to compute the characteristic function of the
integral of the interest rate. Equation (21) can take the following form

C0 = E
[
e−

∫ t
0 rsds max

(
y0e

∫ t
0 rsds−K,0

)∣∣∣F0

]
= E

[
max

(
y0−Ke−

∫ t
0 rsds,0

)∣∣∣F0

]
. (23)

From now on we constantly benefit from the procedure found in Duffie and Sin-
gleton (2003) to obtain characteristic functions of affine jump-diffusion (AJD) models.
AJD is a special type of jump diffusion models in which the drift and the variance
are affine functions of the state vector. In the one-dimensional case, this means that
µ(rt , t) = κ(θ − rt) and σ(rt , t) =

√
σ2 +σ2

1 rt . The peculiar finding here is defining
a (path-dependent) function of the solution of the AJD model from which a characteristic
function should be obtained. In the problem we are dealing with - the IDI options under
AJD models - our path-dependent function corresponds to the integral of the interest rate
process, from which the closed-form expression for the associated characteristic function
is calculated.

We may apply the COS method to a variety of interest rate models which have
explicit characteristic functions associated with the integrated process, ranging from jump
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process to stochastic volatility models. Below, we supply the paper with characteristic
functions and the respective cumulants of the Vasicek diffusion model and the augmented
Vasicek model with exponential and normal jump amplitudes in a compound Poisson
process with constant intensity.

The Vasicek model belongs to the class of Gaussian models which have constant
volatility, that is σ1 = 0. This specification provides easy calculation of bond and vanilla
option prices. Moreover, Gaussian models present good forecasting performance and
fitting of the yield curve (see, for instance, Dai and Singleton (2002) and Duffee (2002)).
On the other hand, Gaussian models yield negative interest rates with positive probability.
However, as pointed out by Duffie (2001), allowing negative rates is not necessarily wrong
but only undesirable since Gaussian models can assign very low probability to negative
rates with appropriated choices of the parameters.

Theorem 1 The characteristic function associated to the integrated process xt =
∫ t

0 rsds

where rs is given by an Gaussian affine jump-diffusion model of the form (17) is

f̂ (u,x0) = E
[
eiuxt |x0

]
= eα(t)+β (t)r0, (24)

where

α
′(s) = β (s)θκ +

1
2

σ
2
β (s)2 +λ

[
E
(

eβ (s)Z
)
−1
]
, (25)

β
′(s) = −κβ (s)+ iu, (26)

with boundary conditions α(0) = 0 and β (0) = 0.3

Proof. See Duffie and Singleton (2003).

Corollary 1 (Characteristic function of Vasicek model) Let µ(rt , t)= κ(θ−rt), σ(rt , t)=

σ in (17). The resulting process is the Vasicek model (Vasicek, 1977) for which the par-

ticular solution of (24) is given by

α(t) = −
(

θ +
iuσ2

2κ2

)
(β (t)− iut)− σ2

4κ
β

2(t), (27)

β (t) = −
(

iu
κ

)
(e−κt−1). (28)

Proof. The result immediately follows from (25) with λ = 0.

3Of course, α and β are also functions of u. We omit this dependence in order to simplify the notation.
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Figure 1: PDF of the Vasicek model
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Figure 2: CDF of the Vasicek model

Corollary 2 The cumulants of the Vasicek model are given by

c1 =
e−κt (θκteκt + r0eκt−θ (eκt−1)− r0)

κ
, (29)

c2 =
σ2e−2κt ((2κt−3)e2κt +4eκt−1

)
2κ3 , (30)

c4 = 0. (31)

Proof. Substituting the characteristic function (24) in (16) with α and β given respec-
tively by (27) and (28), we obtain Corollary (2).

Figures 1 and 2 show the probability density and the cumulative function of the
integrated process approximated using (11), where rt is given by the Vasicek process with
κ = 0.1265, θ = 0.0802 and σ = 0.0218.4 We also set r0 = 0.1 and t = 2.

Corollary 3 (Characteristic function of Vasicek model with exponentially distributed jumps)

Let µ(rt , t) = κ(θ − rt), σ(rt , t) = σ and let the jump size Z be exponentially distributed

with constant intensity λ and expected amplitude ±η , that is, conditional on the occur-

rence of a jump, the density function of Z is

p(z;η) =
1
η

e−
z
η ∀ z≥ 0. (32)

Then the particular solution of (24) is given by

α(t) = −
(

θ +
iuσ2

2κ2

)
(β (t)− iut)− σ2

4κ
β

2(t)−λ t +
λ

1+ iuη
ln
(

1∓β (t)η
e−κt

)
(33)

β (t) = −
(

iu
κ

)
(e−κt−1). (34)

4This set of parameters are around typical values found in works that estimated Gaussian models with
Brazilian data (see, for instance, da Silva et al. (2016)).
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Figure 4: PDFs of the integrated short-term
rate process under the augmented Vasicek
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Proof. Taking Z as exponentially distributed in equation (25) according to (32), we obtain
Corollary 3.

Corollary 4 The cumulants of the Vasicek model with exponentially distributed jumps are

given by

c1 =
λη (κt)

(κ)2 −
(
(e−κt−1)

κ
+ t
)

θ +
λη (e−κt−1)

κ2 +
r0 (e−κt−1)

κ
, (35)

c2 =
2λη2κt

κ3 − σ2

k2

(
(e−κt−1)

κ
+ t
)
+

2λη2 (e−κt−1)
κ3 − λη2 (e−κt−1)2

κ3 − σ2 (e−κt−1)2

2κ3 ,

(36)

c4 =
24λη4κt

κ5 +
24λη4 (e−κt−1)

κ5 − 12λη4 (e−κt−1)2

κ5 +
8λη4 (e−κt−1)3

κ5 − 6λη4 (e−κt−1)4

κ5 .

(37)

Proof. Substituting the characteristic function (24) in (16) with α and β given respec-
tively by (33) and (34), we obtain Corollary 4.

Figures 3 and 4 show the probability density functions of the integrated short-term
rate process approximated using (11), where rt is given by the Vasicek model with ex-
ponentially distributed jumps. The diffusion parameters are κ = 0.1265, θ = 0.0802 and
σ = 0.0218. We also set r0 = 0.1 and t = 2. In Figure 3 we fix η = 0.005 and vary
the jump intensities. On the other hand, in Figure 4 we fix λ = 1 and vary the jump
amplitudes.

Corollary 5 (Characteritic function of Vasicek model with normally distributed jumps)

Let µ(rt , t) = κ(θ − rt), σ(rt , t) = σ . Assume that the jump size Z is normally distributed

14



with constant intensity λ , mean m and variance Σ2, that is, the density function of Z

conditional on the occurrence of a jump is

p(z;m,Σ) =
1

Σ
√

2π
e−

(z−m)2

2Σ2 ∀ z ∈ R. (38)

Then the particular solution of (24) is given by

α(t) = −
(

θ +
iuσ2

2κ2

)
(β (t)− iut)− σ2

4κ
β

2(t)−λ t +λ

∫ t

0
eβ (l)m+

(β (l)Σ)2
2 dl (39)

β (t) = −
(

iu
κ

)
(e−κt−1). (40)

Proof. The expectation in (25) is calculated according to (38). The remaining derivation
follows the Corollary 1. Note that there is no closed-formula to the jump part of (39).

Corollary 6 The cumulants of the Vasicek model with normally distributed jumps are

given by

c1 =
e−κt (θκteκt + r0eκt−θ (eκt−1)− r0)

κ
+

λe−2κt ((2κm−2κ2mt
)

e2κt−2κmeκt)
2κ3 ,

(41)

c2 =
σ2e−2kt ((2kt−3)e2kt +4ekt−1

)
2k3 +

λe−2κt ((2κt−3)e2κt +4eκt−1
)(

Σ2 +m2)
2κ3 ,

(42)

c4 = 0. (43)

Proof. Substituting the characteristic function (24) in (16) with α(t) and β (t) given
respectively by (39) and (40), we obtain Corollary (6).

The probability density functions of the integrated process approximated by (11) is
shown in Figures 5 and 6. In this example, rt is given by the Vasicek model with normally
distributed jump. The diffusion parameters are κ = 0.1265, θ = 0.0802 and σ = 0.0218.
We also set r0 = 0.1 and t = 2. In Figure 5 we vary the jump intensities for fixed m = 0
and Σ = 0.02. In Figure 6 we vary the standard deviation Σ with a fixed jump intensity
(λ = 2).

4 IDI option pricing with the COS method

In the previous section, we obtain the characteristic function of the random variable∫ T
t rsds which enters in A j coefficients in Equation (13). Therefore, in order to price

the IDI options, we have to calculate the corresponding B j coefficients. In this section,
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Figure 5: PDF of the integrated short-term
rate process under the augmented Vasicek
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for some jump intensities
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we consider the vanilla call option case as shown in Equation (20) and the digital option
defined in Equation (22).

4.1 B j coefficients for vanilla options

Theorem 2 The B j coefficients for vanilla IDI call options are given by

B0 =
∫ b

−ln( y0
K )

y0−Ke−xdx = y0

(
ln
(y0

K

)
+b−1

)
+ e−bK, (44)

and

B j =
∫ b

−ln( y0
K )

(
y0−Ke−x)cos

(
π j (x−a)

b−a

)
dx =

(b−a)e−b
((

b2−2ab+a2)eby0 sin
(

π jln( y0
K )+πa j

b−a

)
+(πa−πb)eb jy0cos

(
π jln( y0

K )+πa j
b−a

))
π j (π2 j2 +b2−2ab+a2)

+

(b−a)e−b ((π2eb j2 +
(
b2−2ab+a2)eb)sin(π j)y0 +

(
(πb−πa) jcos(π j)−π2 j2 sin(π j)

)
K
)

π j (π2 j2 +b2−2ab+a2)
.

(45)

Proof. The vanilla IDI call option payoff is given by (20). Integrating it according to
equation (14) gives Theorem 2.
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4.2 B j coefficients for digital options

Theorem 3 The B j coefficients for digital IDI call options are given by

B0 =
∫ b

−ln( y0
K )

dx = ln
(y0

K

)
+b, (46)

and

B j =
∫ b

−ln( y0
K )

cos
(

π j (x−a)
b−a

)
dx (47)

=
(b−a)

π j

(
sin

(
π j
(
ln
(y0

K

)
+a
)

b−a

)
+ sin(π j)

)
.

Proof. The digital IDI call option payoff is given by (22). Integrating it according to
equation (14) gives Theorem 3.

5 Hedging via Fourier series

Equation (13) is suitable to the straight developing of the hedging parameters. As only
the B j terms include information about the IDI, the delta hedging is simply given by

∂C(0, t)
∂y0

=
n

∑
k=0

A j
∂B j

∂y0
. (48)

5.1 European vanilla options

Theorem 4 The ∆ j coefficients for vanilla IDI call options are given by

∆0 =
∂B0

∂y0
= ln

(y0

K

)
+b, (49)

and for j ≥ 1

∆ j =
∂B j

∂y0
=

(b−a)
π j

(
sin

(
π jln

(y0
K

)
+πa j

b−a

)
+ sin(π j)

)
. (50)

Proof. The Theorem follows directly from (44) and (45).
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Figure 7: Vanilla IDI option price under the
Vasicek model
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5.2 European digital options

Theorem 5 The ∆ j coefficients for digital IDI call options are given by

∆0 =
∂B0

∂y0
=

1
y0
, (51)

and for j ≥ 1

∆ j =
∂B j

∂y0
=

cos
(

π j(ln( y0
K )+a)

b−a

)
y

. (52)

Proof. The Theorem follows directly from (46) and (47).

6 Computational analysis and numerical results

In this section we analyzed the IDI option prices given by the COS method. First, we
assume that the short rate evolves according to the Vasicek model. In this simple case,
Vieira and Pereira (2000) provide a closed-form solution to the IDI call price which allow
us to investigate the error of the COS method. In this exercise, we work with the same
values of parameters used in da Silva et al. (2016), namely, κ = 0.1265, θ = 0.0802 and
σ = 0.0218. The time to maturity of the option is two years and its strike price is 123,000.
The IDI spot (IDI0) is 100,000. Figure 7 shows the prices of this option as function of r0

calculated by the COS method and by the closed-form developed by Vieira and Pereira
(2000). Note that the prices are visually indistinguishable which is highlighted in Figure
8, where we can see that the error is of the order of 10−11 for n = 100.

In order to investigate the convergence of the COS method, we analyze the pricing
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and hedging errors of the IDI call options when we increase n exponentially, that is,
n = 2p. The benchmark is the price of the option provide by the analytical result shown in
Vieira and Pereira (2000). We use the cumulants given in (29) and (30) to determine the
integration limits calculated via (15). The upper panel of Table 1 shows the convergence
results for the price while the lower panel presents the converge results for the delta-
hedging. We highlight the fast convergence of the prices and the deltas. Moreover, note
that increases in n add a little computational effort.5

Table 1: Convergence Analysis
Pricing

p 3 4 5 6 7
Time (sec) 0.0151 0.0153 0.0158 0.0159 0.0159
Abs. Err. 81.75×100 1.43×100 1.18×10−5 2.53×10−11 2.52×10−11

Hedging
p 3 4 5 6 7

Times (sec) 0.0233 0.024 0.024 0.025 0.025
Abs. Err. 0.02×100 6.84×10−4 1.13×10−8 1.99×10−15 1.99×10−15

We also analyze the convergence varying the coefficient L of equations (15) and
fixed p = 7. Figure 9 presents the results. In the left panel we show the fast convergence
for a very short maturity of 2 days of an at-the-money call option (strike price equals
100,100). In the right panel we repeat the process for a very long maturity of 10 years
(strike price equals 271,828). In both cases the method meets satisfactory error for L≥ 6.
The results are very similar to those presented in Fang and Oosterlee (2008) for options
on stocks.

0 5 10 15 20
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

L

lo
g 10

(|
er

ro
r|

)

IDI Call option delta, t=0.01 (maturity in years)

0 5 10 15 20
−14

−12

−10

−8

−6

−4

−2

0

2

4

L

lo
g 10

(|
er

ro
r|

)

IDI Call option delta, t=10 (maturity in years)

Figure 9: Error convergence as a function of L.

5The computer used for all experiments has an Intel Core i5 CPU, 2.53GHz. The code was written in
MATLAB 7.8.
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the augmented Vasicek model with exponen-
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Figure 11: Vanilla IDI option price under
the augmented Vasicek model with exponen-
tially distributed jump sizes (negative jumps)
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Figure 12: Vanilla IDI option price under the augmented Vasicek model with normally
distributed jump sizes for some standard-deviation of the jump amplitude

To study the IDI option price behavior due to discontinuities in the interest rate, we
add a jump process to the pure Vasicek model. In this case, we do not have a close-form
solution to the IDI option price. Therefore, we only investigate as the call prices varies
when we change the model jumps parameters. First, we consider an exponential jump
component with λ = 4 and η = ±0.005. The diffusion parameters are the same of the
previous exercises. Figure 10 presents the prices as a function of r0 assuming a positive
jump. In Figure 11 we show the price for a negative η . As expected, a positive jump
raises the price of the option, while a negative decreases it. Next, we enhance the basic
model with normal jumps. Figure 12 shows the call prices for some values of Σ with fixed
λ = 2 and m = 0. A normal jump increases the price of the IDI option. The higher the
volatility of the jump, the higher the price. This is expected finding since the normal jump
is a source of risk, therefore must be pricing.

To further demonstrate the powerful of the COS method, we analyze the pricing
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Figure 13: Digital IDI option price under
the augmented Vasicek model with exponen-
tially distributed jump sizes for some jump
intensities
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Figure 14: Digital IDI option price under
the augmented Vasicek model with exponen-
tially distributed jump sizes for some jump
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problem of an exotic option on the IDI. Specifically, we price the digital IDI call option
(see Equation 22). We again use the diffusion parameters aforementioned adding expo-
nential jump components. In Figure 13 we show the price as function of λ while in Figure
14 we vary the η parameter. For these digital IDI options examples we use a strike price
equals 150,000 with the other features of the call kept unchanged. Note that the higher
λ or η , the higher the option price. This result is in accordance with the finance theory,
since both the intensity and the amplitude of the jump are sources of risk.

As final exercise, we show in Figure 15 a possible volatility skew implied by the
jump-diffusion models. The parameters for the Vasicek model with exponentially dis-
tributed jump process are κ = 1, θ = 0.05, σ = 0.03, λ = 5 and η = 0.0025. We also set
r0 = 0.10 and t = 1. After computing the options prices for different strikes, we follow
the market practice, obtaining the implied volatilities by the Black (1976) model. Note
that the model is able to reproduce the stylized fact of skew volatility: the higher the
moneyness, the higher the Black implied volatility.

7 Conclusion

We extended the range of application of the COS method to interest rate derivatives con-
tracts. We obtain the prices and the hedging parameters for a special financial product
found in the Brazilian Market, the IDI option. The method allows fast simultaneous cali-
bration for different models, which have characteristic function in closed-form, since the
payoff is treated independently of the stochastic factors. We also provide a variety of
characteristic functions of affine jump-diffusion integrated process, which is used to cal-
culate the price of such product. The numerical results demonstrate the effectiveness of
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the COS method for interest rate derivatives in a similar way that it was already reported
for stock options in other works. It is important to emphasize that due to the nature of the
COS method, it is easily implemented on parallel computers, speeding up the convergence
results.
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