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Non-technical Summary  

 

An economy grows, that is, produces more goods and services, when (i) it employs more 

inputs (e.g., land, equipment, structures, and workers) in production, or (ii) it becomes 

more efficient in using those inputs. This efficiency level is known as total factor 

productivity (TFP) and is a key determinant of countries' economic performance. For 

example, the Brazilian economic boom in the mid-2000s was driven by more rapid gains 

in TFP. But why did TFP growth accelerate during this period? What explains the 

slowdown afterward? To address these questions, we decompose Brazilian TFP into 

technology and allocative efficiency components. The rationale is that a country’s TFP 

grows as (i) firms’ productivity increases (technology component) or (ii) resources 

become better allocated across firms (allocative efficiency component). Economic 

resources can be misallocated due to various factors, such as taxes, regulations, subsidized 

credit, corruption, and market frictions. We focus on misallocation caused by market 

power: if more productive firms have increased market power, charging higher prices, 

they will sell less and, consequently, be smaller than they ideally should be, thereby 

lowering the overall productivity of the economy, i.e., TFP. Turning to the empirical 

results, we observe an upward trend in Brazilian allocative efficiency between 2000 and 

2019, reflecting a decrease in firms’ market power as measured by the average markup. 

These results sharply contrast with most developed countries, where allocative efficiency 

worsened and markups increased over the last decades. Additionally, the cycles in 

Brazilian TFP are largely driven by allocative efficiency, with the economic boom in the 

mid-2000s primarily attributed to efficiency gains. In contrast, the technology component 

grows more steadily, around 0.9% per year, suggesting it reflects structural characteristics 

of the economy. Since allocative efficiency cannot increase or decrease indefinitely, this 

0.9% annual growth rate can be interpreted as the current long-run growth level of TFP 

in Brazil. 
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Sumário Não Técnico 

 

Uma economia cresce, ou seja, produz mais bens e serviços (i) ao empregar mais insumos 

(terra, máquinas e equipamentos, estruturas industriais, trabalhadores, etc.) na produção 

ou (ii) ao se tornar mais eficiente no uso desses insumos. Esse nível de eficiência é 

conhecido como produtividade total dos fatores (PTF) e é um determinante fundamental 

do desempenho econômico dos países. Por exemplo, o boom econômico brasileiro de 

meados dos anos 2000 foi resultado dos ganhos mais rápidos na PTF. Mas por que o 

crescimento da PTF acelerou durante esse período? O que explica a sua desaceleração 

posterior? Para responder a essas questões, decompomos a PTF brasileira em 

componentes de tecnologia e eficiência alocativa. A ideia é que a PTF de um país cresce 

à medida que (i) aumenta a produtividade das empresas (componente de tecnologia) ou 

(ii) os recursos são melhor alocados entre as firmas (componente de eficiência alocativa). 

Existem várias causas para a má alocação de recursos econômicos, como impostos, 

regulamentações, crédito subsidiado, corrupção e fricções de mercado. Nós focamos na 

má alocação causada por poder de mercado: se as firmas mais produtivas têm maior poder 

de mercado, cobrando preços mais altos, elas venderão menos e, logo, serão menores do 

que deveriam idealmente ser, diminuindo assim a produtividade geral da economia, isto 

é, a PTF. Em relação aos resultados empíricos, nós encontramos uma tendência de 

melhora na eficiência alocativa brasileira entre 2000 e 2019, refletindo a diminuição no 

poder de mercado das firmas, conforme medido pelo markup médio. Esses resultados 

contrastam fortemente com o observado na maioria dos países desenvolvidos, onde a 

eficiência alocativa piorou e os markups aumentaram nas últimas décadas. Além disso, 

os ciclos na PTF brasileira são principalmente causados pela eficiência alocativa, com o 

boom econômico de meados dos anos 2000 sendo atribuído principalmente aos ganhos 

de eficiência. Em contraste, o componente tecnológico cresce de forma mais estável, em 

torno de 0,9% ao ano, sugerindo que reflete características estruturais da economia. Como 

a eficiência alocativa não pode aumentar ou diminuir indefinidamente, essa taxa de 

crescimento anual de 0,9% pode ser interpretada como o nível atual de crescimento de 

longo prazo da PTF no Brasil. 
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Abstract

This paper investigates the role of market-power-driven misallocation in shaping total fac-

tor productivity (TFP) during recent economic cycles in Brazil, using the static Cournot

model of Martinez and Santos (2024). The model primarily relies on macroeconomic data

for calibration, allowing us to decompose Brazil’s national TFP into technology and al-

locative efficiency components from 2000 to 2019. Over these two decades, we observe

an upward trend in allocative efficiency, reflecting an increase in the labor income share

and a corresponding decrease in the average markup, in sharp contrast with most developed

countries. Our results further indicate that the cycles in Brazilian TFP are largely driven

by allocative efficiency, with the mid-2000s economic boom mainly attributed to efficiency

gains. In contrast, the technology component grows more steadily, around 0.9% per year,

suggesting it reflects structural characteristics of the economy. Since allocative efficiency

is bounded, this 0.9% annual growth rate can be interpreted as the current long-run growth

level of TFP in Brazil.
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1 Introduction

Economic growth is often shaped by the behavior of total factor productivity (TFP) (e.g., Jones
2016, Bergeaud et al. 2018, and Crafts and Woltjer 2021). In Brazil, the story is no different,
with the economic boom in the mid-2000s driven by rapid gains in TFP. The challenge lies
in understanding TFP, which is notoriously difficult. On the one hand, from an empirical per-
spective, TFP is a residual, “a measure of our ignorance,” capturing the portion of output (e.g.,
GDP) that cannot be explained by the measured inputs (e.g., labor and capital). As a residual,
the drivers of TFP are, by construction, unknown. On the other hand, from a theoretical per-
spective, there are so many potential determinants of TFP that arriving at a definitive answer
is practically impossible. Broadly speaking, a country’s TFP grows when (i) firms’ produc-
tivity improves, or (ii) resources become better allocated across firms. However, as discussed
by Syverson (2011), the determinants of firm-level productivity are numerous, ranging from
internal factors (e.g., managerial practices, R&D, and learning-by-doing) to external ones (e.g.,
productivity spillovers, competition, and regulation). Similarly, many factors lead to resource
misallocation, including taxes, regulations, subsidized credit, corruption, and market frictions
(see Restuccia and Rogerson 2013 for a survey of this literature).

In this paper, we investigate the role of market-power-driven misallocation in shaping Brazil-
ian TFP across recent economic cycles. Specifically, we apply the static Cournot model of Mar-
tinez and Santos (2024) to decompose Brazilian TFP into technology and allocative efficiency
components from 2000 to 2019. In their model, firms produce a homogeneous good and are
heterogeneous in productivity, with a large number of inefficient firms due to free entry among
low-productivity firms. As firms compete à la Cournot, the differences in productivity lead
to heterogeneous markups, resulting in misallocation as marginal products are not equalized
across firms. A novel feature of this model is its primary reliance on macroeconomic data for
calibration, which stems from the stronger underlying assumptions (e.g., homogeneous goods
and free entry among low-productivity firms). This is exactly what allows us to decompose
Brazil’s national TFP over two decades.

In calibrating the model, Martinez and Santos (2024) assume firm productivity follows a
truncated Pareto distribution, testing various values for the Pareto shape parameter and identi-
fying the distributional support by matching the aggregate TFP and the cost-weighted average
of firm-level markups. We adopt a similar approach but go further by estimating the shape
parameter, targeting a measure of concentration: the number of active firms multiplied by the
Herfindahl–Hirschman index (HHI) of the labor market.

To compute the target moments using real-world data, we first parameterize the firms’ pro-
duction function, which is Cobb-Douglas with constant returns to scale, using both capital and
labor as inputs. The capital share parameter, α, is calibrated to 0.39 based on cost share data.
Labor expenses are sourced directly from the National Accounts, while capital expenses are
calculated following Barkai (2020), estimating a required rate of return in the spirit of Hall and
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Jorgenson (1967). With α determined, the first two moments are straightforward to obtain from
standard macroeconomic data. The cost-weighted average markup is equal to 1− α divided by
the labor share of national income, while TFP is backed out as a residual from the aggregate
production function. Naturally, obtaining this last moment requires data on labor and capital
stock, which are both adjusted for input usage based on a capacity utilization survey. Rather
than merely multiplying the capital stock by a capacity utilization indicator, we introduce a
“capacity utilization share parameter.” This imposes capital and labor utilization is simply a
rescaling of an observable measure of input usage intensity, in line with Basu et al. (2006) and
Basu et al. (2013). To estimate this share parameter, we rely on the dynamic panel literature on
production function estimation (e.g., Blundell and Bond 2000). Specifically, we use the simpli-
fied version of these methods presented in Ackerberg et al. (2015), but apply it to time series
rather than panel data.

However, obtaining a representative third moment for the entire economy proves challeng-
ing even with comprehensive firm-level data, as it involves the complex task of defining the rel-
evant market for each firm in the economy (see Berry et al. 2019, Syverson 2019, and Benkard
et al. 2021 for a discussion). Given this difficulty, we pursue a weaker moment match in this
case, trying only to approximate the shape of its time series by targeting the moment normal-
ized. This approach avoids the need for precise estimation of this data moment, as both its
mean and variance become irrelevant, allowing us to rely on relatively aggregate employment
data and simple assumptions about the relevant markets (e.g., a single national market).

Turning to our empirical results, we observe an upward trend in allocative efficiency be-
tween 2000 and 2019. This reflects the observed increase in the labor income share and,
thus, the estimated decrease in the average markup, as misallocation increases with the av-
erage markup in the model. This contrasts sharply with most developed countries, which have
experienced a decreasing labor share and increasing average markup over the last decades (e.g.,
Calligaris et al. 2018, De Loecker and Eeckhout 2018, and Autor et al. 2020). Accordingly,
Baqaee and Farhi (2020) find the distance from optimal allocation widened in 2015 compared
to 1997 in the US. Additionally, our results show that the cycles in Brazilian TFP are largely
driven by allocative efficiency, with the economic boom in the mid-2000s primarily attributed
to efficiency gains. In contrast, the technology component of TFP grows more steadily, around
0.9% per year, suggesting it reflects structural characteristics of the economy. Since alloca-
tive efficiency is bounded and consequently cannot increase or decrease indefinitely, this 0.9%
annual growth rate can be interpreted as the current long-run growth level of Brazilian TFP.

We demonstrate our main conclusions hold across four robustness exercises. First, we re-
estimate the model assuming a uniform distribution of productivity, using only macroeconomic
data for calibration, as the third moment is not required in this case.1 According to Martinez

1This makes the model robust to potential measurement errors in labor market concentration data. Our primary
quantification strategy only requires sound estimates of overall trends in labor market concentration. However, even
this requirement may not always be met. For instance, Benkard et al. (2021) calculate product market concentration
in the US from 1994 to 2019 for (i) “narrowly defined product markets as would be defined in an antitrust setting”
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and Santos (2024), this effectively selects the Pareto shape parameter that leads to the most
conservative reasonable TFP decomposition compared to standard accounting exercises, where
all TFP variation is attributed to technology. Second, we set the capital share parameter α to
the standard value of 1/3 or to 0.41, instead of our baseline calibration (α = 0.39). Third, we
experiment with a higher labor income share by allocating all self-employment income (mixed
income) to labor. In the baseline case, mixed income is allocated to labor and non-labor in
the same proportions as the rest of the economy, following the preferred method of the Penn
World Table 10.01 (Feenstra et al. 2015). Finally, instead of selecting a productivity density, we
impose a firm market share distribution that is consistent with empirical evidence supporting
Zipf’s law for firm size (Okuyama et al. 1999, Axtell 2001, Fujiwara et al. 2004, Luttmer 2007,
Gabaix and Landier 2008, Di Giovanni et al. 2011, Di Giovanni and Levchenko 2013, Da Silva
et al. 2018, and Santos and Cajueiro 2024). We search for the distributional parameters by
matching the model’s predictions to the same three data moments used in the baseline case.

Related literature. We employ the static Cournot model of Martinez and Santos (2024), which
relates to several papers that embed oligopoly market structures in macroeconomic models (e.g.,
Bernard et al. 2003, Atkeson and Burstein 2008, Edmond et al. 2015, Peters 2020, De Loecker
et al. 2021, Wang and Werning 2022, and Edmond et al. 2022). Their model is notable for
requiring minimal microdata for calibration, achieved through reliance on stronger assumptions.
We contribute to their work in several dimensions. First, we derive the model’s expressions for
(i) the HHI of the labor market and (ii) the HHI of the product market. Second, using that
expression for labor market concentration, we estimate the Pareto shape parameter using real-
world data, whereas Martinez and Santos (2024) explore scenarios by assigning different values
to the shape parameter. Third, in a robustness exercise, we extend the analysis beyond a Pareto
productivity density and assume firm market share follows a Lomax distribution. Martinez
and Santos (2024) establish necessary and sufficient conditions for achieving an exact match
of the first two target moments, namely, aggregate TFP and average markup. They first derive
general results by examining an arbitrary truncated distribution, which they subsequently apply
to delineate the specific conditions for the Pareto case. We adopt a similar strategy, utilizing
their general results to derive analogous conditions for the Lomax case. Finally, we account for
the potential underutilization of inputs and adjust capital and labor using a capacity utilization
survey, in the spirit of Basu et al. (2006) and Basu et al. (2013).

Given our goal of disentangling TFP growth, this paper is closely related to the growth-
accounting literature and its various methodologies for decomposing TFP into technology and
allocative efficiency components (e.g., Basu and Fernald 2002, Petrin and Levinsohn 2012, and
Baqaee and Farhi 2020). Despite their differences, all these methods rely on highly general
models that do not impose any specific market structure but require extensive microdata, which
are hardly available for all firms in the economy. The common solution is to use (i) sectoral

(Benkard et al. 2021, p.1) and (ii) broader sector levels (similar to our approach), finding decreasing concentration
in the first case but increasing in the second.
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data that span the entire economy (e.g., Basu and Fernald 2002), (ii) firm-level data that do not
span the economy (e.g., Petrin and Levinsohn 2012), or (iii) a combination of both (e.g., Baqaee
and Farhi 2020). We follow an alternative approach, employing a model that requires minimal
microdata by relying on stronger assumptions. Another difference is that Martinez and Santos
(2024) measure allocative efficiency by the distance from optimal allocation, which contrasts
with the concept typically adopted in this literature. As Baqaee and Farhi (2020, p.107) point
out, “the growth-accounting notion of changes in allocative efficiency due to the reallocation
of resources to more or less distorted parts of the economy over time is very different from the
misallocation literature’s notion of allocative efficiency measured as the distance to the Pareto-
efficient frontier.”

Finally, our work shares common ground with the literature on misallocation (see, e.g.,
Restuccia and Rogerson 2008, Hsieh and Klenow 2009, and the survey article by Restuccia and
Rogerson 2013).2 However, in this literature, misallocation results from exogenous wedges,
whose estimation requires extensive firm-level data, similar to growth-accounting methods. In
contrast, in the model of Martinez and Santos (2024), misallocation is endogenous, emerging as
an equilibrium outcome. Moreover, the typical goal in this literature is to assess the importance
of misallocation in explaining cross-country TFP differences, often within the manufacturing
sector due to data availability, whereas we focus on economy-wide TFP evolution over time
within a single country.

The remainder of the paper is organized as follows. Section 2 briefly reviews the model of
Martinez and Santos (2024). Section 3 outlines our quantification strategy, which requires data
and parameters obtained in Section 4. Section 5 presents the baseline empirical results, while
Section 6 conducts robustness checks. Finally, Section 7 offers concluding remarks.

2 Model

We use the static Cournot model of Martinez and Santos (2024), where firms have different
productivity levels and consequently charge distinct markups, leading to the misallocation of
resources. Formally, in a closed economy, N potential entrant firms produce a single good. The
price elasticity of demand for this good is strictly negative, with its absolute value denoted by η,
where 1 < η < ∞. The output of firm i ∈ {1, 2, ..., N} is given by the Cobb-Douglas function

Yi =AiK
α
i L

1−α
i , (1)

where Ki ≥ 0 is the capital stock, Li ≥ 0 is the labor employed, and Ai > 0 is a productivity
parameter, all for firm i, with α ∈ (0, 1). Let A ≡ mini{Ai} and A ≡ maxi{Ai} be the
technology frontier of this economy, with 0 < A < A < +∞. Denote the empirical probability

2For studies on misallocation in Brazil, see Busso et al. (2013), Vasconcelos (2017), and Calice et al. (2018)
for manufacturing, and De Vries (2014) for the retail sector.
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of A by g(A) and the corresponding empirical cumulative distribution function by G(A) =∑
a<A g(a).
These firms compete à la Cournot, each taking the wage w > 0 and the rental cost of capital

r > 0 as given. There are no fixed costs, but some firms may not be active due to the assumption
of homogeneous goods. As a result, an entry stage is required to determine the set of active
firms in equilibrium, when (i) each active firm earns non-negative profits and (ii) non-active
firms would incur strictly negative profits if they entered the market. However, this equilibrium
is typically not unique (Atkeson and Burstein 2008, Edmond et al. 2015, De Loecker et al.
2021). To avoid multiple equilibria, they discard any equilibrium where a non-active firm has a
lower marginal cost than an active firm. Consequently, in the (unique) refined equilibrium, there
is a firm with productivity A that serves as the cutoff for active firms, such that firm i is active if
and only if Ai ≥ A. Finally, they consider free entry among low-productivity firms, supposing
the number of such firms is sufficiently large to the extent that some should be inactive. This
implies the profit of a firm with productivity A should be, in some sense, low. Martinez and
Santos (2024) assume it is approximately zero.

Given this setup, they show

s(Ai) ≈η (1− A/Ai) , (2)

where s(Ai) is the market share of a firm with productivity Ai, Ai ≥ A. Clearly, more pro-
ductive firms have higher market shares and, consequently, higher profits, given that all firms
charge the same price (homogeneous goods) and that (constant) marginal cost strictly decreases
with productivity. Moreover, the marginal active firm, whose productivity is A, has roughly
zero output and profit, as expected. Interestingly, the demand elasticity η can be inferred from
the empirical distribution of productivity among active firms:

η ≈ 1

Na [1− Ea (A/A)]
, (3)

with Ea (h(A)) ≡ E (h(A)|A ≥ A) =
∑

A≥A h(A) g(A)
1−G(A)

being the expected value of a func-
tion h over active firms under the empirical distribution, and Na ≡ N (1−G(A)) being the
number of active firms.

They use these results to derive the aggregate production function. Let Y ≡
∑N

i=1 Yi be
the aggregate output, K ≡

∑N
i=1 Ki be the aggregate capital stock, and L ≡

∑N
i=1 Li be

the aggregate amount of labor employed. They obtain the following aggregate Cobb-Douglas
production function:

Y =AΩKαL1−α, (4)

where AΩ represents the aggregate TFP, which comprises two components. First, the efficient
TFP level A, as the homogeneity of goods implies that the optimal allocation entails assign-
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ing all inputs to the most productive firm, which has productivity A. Second, the allocative
efficiency Ω ∈ (0, 1], measuring the distance of aggregate TFP, AΩ, from its optimal level, A,
where

Ω ≈
Ea

[
(A/A)(1− A/A)

]
Ea [(A/A)(1− A/A)]

. (5)

Martinez and Santos (2024) show Ω improves as A increases due to the exit of less productive
active firms, suggesting higher productivity dispersion among active firms is associated with
worse allocative efficiency. In particular, since any allocation of resources is optimal in the
absence of productivity heterogeneity, they demonstrate Ω → 1 as A → A, which resembles
a market in perfect competition, where all active firms have unitary markups and zero profits,
with Na → ∞.

The empirical strategy proposed in Martinez and Santos (2024) relies on the cost-weighted
average of firm-level markups, defined as µ ≡

∑N
i=1

(
Liw+Kir
Lw+Kr

)
µi, where µi denotes the markup

of firm i. Specifically, they show

µ ≈AΩ

A
. (6)

Using their results, we derive expressions for two measures of concentration: (i) the Herfind-
ahl–Hirschman index (HHI) of the labor market HHIL ≡

∑N
i=1(Li/L)

2 and (ii) the HHI of the
product market HHIs ≡

∑N
i=1 s(Ai)

2. As shown in Appendix A,

NaHHIL ≈
Ea

[
(A/A)2 (1− A/A)2

]
{Ea [(A/A)(1− A/A)]}2

(7)

NaHHIs ≈
Ea

[
(1− A/A)2

]
[Ea (1− A/A)]2

≈ 1− 1/µ

1− Ea (A/A)
. (8)

Martinez and Santos (2024) also present a version of the model with a continuum of firms
indexed by i ∈ [0, N ]. However, unlike the common approach in the literature (e.g., in macroe-
conomic models of monopolistic competition), null-measure firms do not ignore the impacts
of their decisions on aggregate outcomes. Firms pay at least some attention, believing that
∂Y/∂Yi = q ∈ (0, 1]. In this case, all the above equations, including (7) and (8), would hold
exactly if (i) η is replaced by η/q and (ii) integrals are used instead of sums (e.g., Y ≡

∫ N

0
Yidi

and Ea (h(A)) =
∫ A

A
h(A) g(A)

1−G(A)
dA, where g is now a density function).3 These equations

hold exactly because the profit of the least productive active firm is now precisely zero, due
to the possibility of infinitesimal firm entries. Since the two models have essentially the same
equations, they exhibit similar properties: (i) Ω ∈ (0, 1], (ii) Ω strictly increases with A, and
(iii) Ω → 1 as A → A.

3In the discrete model, η > 1 is sufficient for the second-order condition (SOC) for firms’ profit maximization
to hold. In the continuous case, η > 0 or q ∈ (0, 1] should be low.
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3 Quantification strategy

In this section, we outline the calibration strategy. Our primary empirical objective is to com-
pute allocative efficiency Ω, which requires solely the distribution of firms’ productivity (see
Equation (5)). Thus, we aim to utilize real-world data to pin down the distributional parame-
ters. We propose a two-stage procedure. In the first stage, we employ the calibration algorithm
of Martinez and Santos (2024), finding, for a given distributional shape, A and A by matching
aggregate TFP AΩ and average markup µ. In the second stage, relying on this first-stage al-
gorithm, we recover the distributional shape from the labor concentration measure NaHHIL.
We detail this two-stage calibration procedure below. Before that, we discuss our distributional
assumption and the computation of the target moments using real-world data.

3.1 Distributional assumption

Following Martinez and Santos (2024), we assume firm productivity is truncated Pareto dis-
tributed with shape parameter k ̸= 0, consistent with the continuous version of their model.
The calibration requires a mapping between the model’s results and the productivity distribu-
tion. For the Pareto case, this is given by

Ea

(
(A/A)j

)
=


(

k
k+j

)(
Ãk+j−1
Ãk+j−Ãj

)
, if k + j ̸= 0(

kÃk

Ãk−1

)
ln Ã , if k + j = 0

(9)

for k ̸= 0, j ∈ N \ {0}, and Ã ≡ A/A > 1.

3.2 Computing the target moments using real-world data

We consider three target moments: (i) the aggregate TFP AΩ, (ii) the cost-weighted average
of firm-level markups µ, and (iii) the labor concentration measure NaHHIL. The first two
moments can be readily obtained using standard macroeconomic data and the parameter α.
While TFP is backed out as a residual from the aggregate production function (4), using AΩ =

Y
KαL1−α , the average markup is calculated as µ = 1−α

LS
, where LS denotes the labor share of

national income.
However, obtaining a representative NaHHIL for the entire economy proves challenging

even with comprehensive firm-level data, as it involves the complex task of defining the rele-
vant market for each firm in the economy (see Berry et al. 2019, Syverson 2019, and Benkard
et al. 2021 for a discussion). This is why we pursue a weaker moment match for NaHHIL, try-
ing only to approximate the shape of its time series by targeting the moment normalized. After
all, in this case, we do not need to estimate NaHHIL precisely as both its mean and variance
are irrelevant, allowing us to rely on relatively aggregate employment data and simple assump-
tions regarding the relevant markets. The computation involves plugging estimates of firm-level

12



employment data into NaHHIL = Na

∑N
i=1(Li/L)

2, as discussed in detail in Section 4.4.

3.3 Two-stage calibration procedure

Given our distributional assumption and the computed data moments, we quantify the model
using a two-stage procedure. In this process, we parsimoniously assume k is time-invariant.

First stage. For a given shape parameter k ̸= 0, we compute A and A by matching aggregate
TFP AΩ and cost-weighted average markup µ, on a period-by-period basis. Martinez and San-
tos (2024) demonstrate that a unique solution for this calibration problem exists if and only if
µ > 1 and k < 2/(µ− 1). Under such conditions, given data on AΩ and µ, the unique solution
for A and A can be found using the following algorithm:

1. Given Equation (9), calculate Ã ≡ A/A by numerically solving

µ =
1− Ea (A/A)

Ea [(A/A)(1− A/A)]
, (10)

which is derived from (5) and (6) holding exactly as in the continuous model.

2. From Equation (6) holding exactly, compute A = AΩ/µ.

3. Given Ã ≡ A/A and A obtained from the previous steps, calculate A = Ã× A.

From Equation (10), the average markup µ identifies Ã, which is a measure of technology
dispersion, reflecting the productivity gap between the most and least productive active firms.
As a consequence, for a given k ̸= 0, allocative efficiency Ω is solely a function of µ, since
computing Equation (5) requires only Ã under (9). Figure 1 plots this function Ω of µ for
truncated Pareto distributions with k = 3, 5, 9, and a uniform distribution (k = −1). Several
points are noteworthy. First, Ω is strictly decreasing in µ = 1−α

LS
and, thus, strictly increasing in

LS. In particular, Ω → 1− as µ → 1+. Intuitively, a lower average markup µ > 1 indicates a
less distorted economy, being associated with enhanced allocative efficiency Ω. Second, given
a time series of µ, a lower k results in a higher and less volatile estimated Ω.

Second stage. Given time series of AΩ > 0 and µ > 1, the first-stage algorithm allows for
the computation of A and A for all periods under any k < 2/(max{µ} − 1), k ̸= 0, where
max{µ} denotes the maximum µ in its time series. With A and A determined, we can compute
several variables in the model, including NaHHIL from Equation (7). Under such conditions,
we find the time-invariant k ̸= 0 by searching for the one that minimizes the Euclidean distance
between the time series of NaHHIL in the model and in the data, with both series normalized to
have zero mean and unit variance.4 Naturally, the search is limited to k < 2/(max{µ}− 1). By
analogous reasoning to that previously used for Ω, computing NaHHIL requires only data on

4This is equivalent to minimizing the sum of squared residuals of the normalized NaHHIL.
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Figure 1: Allocative efficiency Ω versus average markup µ.

the average markup µ (for a given k ̸= 0). As a result, the estimation of k is also independent of
TFP data, meaning TFP data are not used to estimate Ω, not even indirectly through k. TFP data
are required just to pin down A and A. Therefore, to decompose TFP, we first estimate Ω using
data on NaHHIL and µ = 1−α

LS
, and then compute A from the actual TFP AΩ. Consequently,

our two-stage procedure does not contradict the reasoning presented in Martinez and Santos
(2024) regarding the residual from the production function. Specifically, in this model, the
residual is not the TFP AΩ itself, but rather only its technology component A, which is cleaner
as it excludes the effects of misallocation.

4 Data and parameters

This section describes the data and parameters used in our empirical exercise for Brazil. We
begin in Section 4.1 by presenting the basic macroeconomic data, which are used to measure
the key variables of our model, such as output Y and labor income share LS. In this initial
part, we also discuss how varying input utilization is accounted for, involving an econometric
estimation conducted in Section 4.3. This estimation relies on the production function, with the
parameter α calibrated first in Section 4.2 using cost share data. Finally, Section 4.4 details the
data and procedures used to compute the labor market concentration measure NaHHIL.
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4.1 Basic data

We use an annual database, in which Y is the real GDP in 2010 prices, LS is the labor share
of national income, and L̃ is the number of persons engaged, all sourced from the Table of
Resources and Uses of National Accounts produced by the Brazilian Institute of Geography
and Statistics (IBGE). The labor income share LS is calculated as the ratio of wages and social
contributions to the sum of wages, social contributions, and gross operating surplus. As a
consequence, self-employment income (mixed income) is allocated to labor and non-labor in the
same proportions as the rest of the economy, following the preferred method of the Penn World
Table 10.01 (Feenstra et al. 2015). In Section 6.3, we assess the impact of using alternative
labor income share measures. Average annual hours worked by persons engaged, h, are also
sourced from the Penn World Table 10.01, while capital stock in 2010 prices, K̃, is obtained
from Souza Júnior and Cornelio (2020).

To calculate K and L, we adjust K̃ and hL̃ using the capacity utilization rate for manufac-
turing, γ, from the Getulio Vargas Foundation (FGV). This adjustment is implemented using
a flexible approach, considering the following empirical version of the production function (4)
for the year t:

Yt =AtΩtK̃
α
t (htL̃t)

1−αγβ
t . (11)

The underlying assumption is that capital and labor utilization is simply a rescaling of an ob-
servable measure of input usage intensity, in line with Basu et al. (2006) and Basu et al. (2013).
As Basu et al. (2013, p.43) argue, “a cost-minimizing firm operates on all margins simulta-
neously, both observed and unobserved. As a result, changes in observed margins can proxy
for unobserved utilization changes.” Basu et al. (2006) derive this result from a dynamic cost-
optimizing problem in which the firm, subject to adjustment costs, seeks to minimize the present
discounted value of its costs. While they use hours worked as a proxy for input usage, we rely
on a capacity utilization survey, following Comin et al. (2023).

Equation (11) contains two unknown parameters, α and β. While both could, in principle,
be estimated econometrically, we find that (i) the estimates are highly sensitive to the specific
empirical strategy and estimator used, and (ii) α tend to be either implausibly high or, if no
capacity utilization adjustment is made (i.e., β is set to 0), implausibly low. As a result, we opt
to first calibrate the capital share parameter α and only then pursue an econometric estimation
of β. This sequential approach mirrors the methodology of Basu et al. (2006) and Basu et al.
(2013).

4.2 Calibration of the Cobb-Douglas capital share parameter

Since firms use inputs optimally, it follows that α is equal to the cost share of capital, i.e.,
α = Kr

Kr+Lw
. Thus, we can calibrate α using cost share data, as Martinez and Santos (2024)
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do for the US. Labor expenses Lw are readily available from National Accounts. The main
challenge lies in accurately calculating capital expenses, distinguishing them from pure profit.
To address this, we follow Barkai (2020) and compute a required rate of return in the spirit of
Hall and Jorgenson (1967). Capital expenses are then obtained by multiplying this rate by the
nominal value of the capital stock. We perform this calculation for each type of capital listed
in Souza Júnior and Cornelio (2020): (i) residential structures, (ii) infrastructure, (iii) other
structures, (iv) machinery and equipment, and (v) others.

Ignoring any tax treatment, the required rate of return for capital type s is calculated as the
nominal weighted average cost of capital (WACC) minus the expected inflation for capital s,
plus the depreciation rate of capital s. Depreciation rates are sourced from Souza Júnior and
Cornelio (2020), while expected inflations are assumed to be equal to realized inflations, as
computed using the Table of Resources and Uses of National Accounts. The WACC is taken
from Santos (2020), where Brazilian firms are supposed to finance investment solely through
(i) equity or (ii) debt with the Brazilian Development Bank (BNDES). The debt weight is given
by the share of BNDES lending for capital goods in private sector gross capital formation. The
debt interest rate is the BNDES lending rate for capital goods, while the equity rate is the Pre-DI
swap 360 days plus the Equity Risk Premium (ERP) calculated by Carvalho and Santos (2020).5

These data enable us to calculate the share of capital expenses in total expenses from 2002
to 2017, as shown in Figure 2. Using this time series, we estimate an autoregressive process
of order one and use its steady state to calibrate α. The rationale behind this procedure is that
the assumption of optimal use of inputs is a better approximation in the long run, as actual
input usage can deviate significantly from optimal static levels in the short run, particularly for
capital. We find α = 0.39, higher than the standard calibration α = 1/3. This result is robust
to several variations in the calculation of the required rate of return. First, computing the equity
rate using the Pre-DI swap 1800 days still yields α = 0.39. Second, using expected 12-month
consumer inflation from the Focus survey instead of realized capital inflations does not alter the
estimate either. Third, assigning zero weight to debt, thereby making the WACC equal to the
equity rate, only slightly increases the estimate to α = 0.40. Finally, we incorporate corporate
income tax following Barkai (2020), using a 34% corporate (IRPJ/CSLL) tax rate. We consider
two scenarios for the capital cost recovery rate, which is the net present value of depreciation
allowances for capital. Firstly, a recovery rate of 100% results in α = 0.38. Secondly, reducing
the recovery rate to 70.71%, the OECD average level in 2021 according to the Tax Foundation,
increases the estimate, but not by much, to α = 0.41.

5“The Pre-DI swap contract traded at the BM&FBovespa, the Brazilian Stock Exchange, is an interest rate
swap where one of the parties agrees to make pre-fixed interest payments in exchange for receiving floating interest
payments based on the DI rate, whereas the other assumes a reverse position” (Carvalho and Santos 2020, p.12).
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Figure 2: Capital expenses as a share of total capital and labor expenses.

4.3 Estimation of the adjustment for input utilization

Let ∆ ln(AtΩt) = c + ξt, where ∆ represents the first difference operator, E(ξt|It−1) = 0, and
It−1 denotes the information set at time t− 1. Hence, from Equation (11),

∆ lnYt = c+ α∆ ln K̃t + (1− α)∆ ln(htL̃t) + β∆ ln γt + ξt. (12)

We set α = 0.39 and estimate c and β using Equation (12), exploring the moment conditions
E (Xt−1 · ξt) = 0, where Xt−1 is a vector of instrumental variables such as Xt−1 ∈ It−1. This
estimation methodology is grounded in the dynamic panel literature on production function es-
timation (e.g., Blundell and Bond 2000), particularly the simplified model presented in Acker-
berg et al. (2015). However, we apply it to time series rather than panel data. Alternatively, we
could have used the method of Olley and Pakes (1996) or its extensions Levinsohn and Petrin
(2003) and Ackerberg et al. (2015). Nevertheless, given ∆ ln(AtΩt) = c + ξt, these methods
are equivalent to our own if all productivity shocks in (12) affect input decisions, as their first
stage can be ignored in this case. This assumption seems plausible here since input utilization
rates can be quickly adjusted. Empirical evidence also supports this, as we find no evidence of
serial correlation in the error term.6 Additionally, these alternative methods require estimating

6If ln(AtΩt) = ωt + ϵt, where ∆ωt = c + ξt and ϵt denotes white-noise productivity shocks not considered
in input decisions, the error term in (12) would be ξt + ∆ϵt ∼ MA(1). A similar result applies under the more
general assumption ωt = c + ρωt−1 + ξt, when “ρ-differentiating” (11) gives an expression analogous to (12),
with error term ξt + (ϵt − ρϵt−1) ∼ MA(1) (Blundell and Bond 2000).
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a sufficiently flexible nonparametric function in their first stage (e.g., high-order polynomial),
which poses challenges due to our limited sample size (with no more than 24 observations).

Our instruments, X , include a constant, ln K̃t, ln K̃t−1, ln(ht−1L̃t−1), ln(ht−2L̃t−2), ln γt−1,
ln γt−2, lnYt−1, and lnYt−2. Assuming all productivity shocks influence input decisions, these
are the instruments recommended by Ackerberg et al. (2015), with an additional lag of each
variable to better accommodate the first differences in (12). We apply the Two-Stage Least
Squares (2SLS) estimator for this analysis. For completeness, we also estimate (12) using
Ordinary Least Squares (OLS).

Table 1 presents the estimates derived from annual data between 1998 and 2019.7,8 The
results reject both the no-adjustment case (β = 0) and the common practice of applying γ only
to capital (β = α = 0.39), as the β estimates are considerably higher than α = 0.39. The
impact of a higher β on estimated TFP is shown in Figure 3, which compares TFPs under (i) no
adjustment (β = 0), (ii) standard adjustment (β = α = 0.39), (iii) OLS estimate (β = 0.66),
and (iv) 2SLS estimate (β = 0.74). As the figure illustrates, a higher β produces a smoother
TFP, particularly around the economic crises of 2008 and 2015–2016. As discussed in Section
3.3, estimating allocative efficiency Ω does not require TFP data, meaning a smoother TFP
results in a smoother technology frontier A, with no effect on Ω.

Table 1: Estimates of the parameters in the production function (12) for α = 0.39

Parameter OLS 2SLS
c 0.01*** 0.01***

(0.002) (0.003)
β 0.656*** 0.744***

(0.089) (0.095)
Parenthesis: Heteroskedasticity-robust standard error.
Significance: * (10%), ** (5%), *** (1%).
Sample (adjusted): 1998–2019 (22 observations).

In what follows, we use the 2SLS β estimate, as it is consistent under the assumptions
considered here. In any case, this choice is not crucial for our empirical results, since the TFPs
computed using 2SLS and OLS β estimates are very similar, as shown in Figure 3.

4.4 Labor market data

We estimate NaHHIL without using firm-level data, relying instead on two tables from the
Central Register of Enterprises (CEMPRE), provided by IBGE. The first table presents the total
number of firms, total employment, and the number of firms and employment categorized into

7The dataset spans from 1996 to 2019, but we lose the first two observations due to the use of lagged variables.
8We also tested two Generalized Methods of Moments (GMM) estimators from Hansen (2020) that are asymp-

totically efficient under heteroskedasticity: (i) two-step GMM, using 2SLS in the first step, and (ii) iterated GMM.
The β estimates are only slightly higher (0.838 and 0.846, respectively), resulting in nearly equivalent TFPs.
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Figure 3: TFP under various β values (2000=100).

nine size bins based on the number of employees.9 The second table reports the total number
of firms, total employment, and the employment share of the 4, 8, and 12 largest firms (by
number of employees). Although CEMPRE covers all formal organizations, this second table
is limited to formal corporate entities. As a consequence, we opt not to include data from other
formal organizations, namely public administration and non-profit organizations, in the first
table either. This focus on corporate entities ensures comparability between the tables and also
aligns with the model utilized in this paper, where firms are profit-maximizing.

These two tables are available from 2006 to 2020 for all sectors (up to the 3-digit level)
from the National Classification of Economic Activities (CNAE) 2.0, a Brazilian classification
derived from ISIC Rev.4. Using these data, we follow five steps to compute NaHHIL.

Step 1 – addressing missing data. The IBGE omits some employment information to prevent
the identification of individual firms. To address this, for each 2-digit and 3-digit sector and
year, we perform three imputations:

1. Use the total employment from one table to fill in missing values in the other.

2. Estimate missing employment data for a given firm size bin by calculating the simple
average of the bin’s bounds and multiplying it by the respective number of firms.10,11

9The size bins are 0 to 4, 5 to 9, 10 to 19, 20 to 29, 30 to 49, 50 to 99, 100 to 249, 250 to 499, and 500 or more.
10This assumes the average number of employees per firm in a given bin equals the simple average of the bin’s

employment bounds.
11For example, if a sector in a given year has 10 firms with 5 to 9 employees, employment is estimated as
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3. If no further data is missing, we multiply all imputed employment in the size bins by a
scalar, ensuring the sum of employment in the bins matches the total employment figure.
If only one piece of data remains missing, it is backed out as a residual. If more than one
value is still missing, the data for that sector and year are discarded.

Naturally, the second imputation is not applied to the last bin (500 or more employees), as
its upper bound is unknown. For the first bin (0 to 4 employees), while the imputation can be
applied, the results may be distorted due to firms with no employees (e.g., if the number of such
firms is disproportionately high). Therefore, we consider two approaches for the first bin: either
applying or omitting the second imputation procedure.

Step 2 – estimating employment per firm. Let b = {500, 250, 100, ..., 0} be the set of lower
bounds of firms’ size bins from the first table, bk be the k-th largest element of b, and Nj be
the number of firms with j or more employees. Thus, using the two tables (with missing data
addressed in Step 1), we determine, for each available 2-digit and 3-digit sector and year, the
total employment of the i largest formal enterprises, for i ∈ I = {4, 8, 12, Nb1 , Nb2 , ..., Nb9}.
We then use this information to estimate firm-level employment. Denoting the j-th smallest
element of I by ij for j ∈ {1, 2, ..., 12}, with i0 = 0, we estimate employment per firm by
supposing firms ranked (ij−1+1) to ij have the same size. This approach ensures the estimated
firm sizes fall within the bounds specified in the first table.

Since the first bin (0 to 4 employees) includes firms with no employees, we also consider two
alternative approaches to adjust the data before applying the procedure just described. First, we
exclude all data from the first bin, thus considering only j ∈ {1, 2, ..., 11}. Second, we retain
j ∈ 1, 2, ..., 12 but replace Nb9 = N0 by N1, effectively excluding firms with no employees
from the first bin. As the IBGE does not disclose the number of such firms, we estimate it by
assuming firms with 1 to 4 employees have, on average, 1+4

2
= 2.5 employees. Hence, the new

number of firms in the first bin is computed by dividing its total employment by 2.5.

Step 3 – computing the results for each sector and year. Using the employment per firm
estimated in Step 2, we calculate, for each available 2-digit and 3-digit sector and year, the
number of active firms Na and the labor market concentration index HHIL ≡

∑N
i=1(Li/L)

2.

Step 4 – selecting the sectors. We now select the sectors to be used in computing aggregate
results, ensuring they are representative of the entire economy and suitable for model calibra-
tion. We consider two alternative sets of sectors. First, we use all 3-digit sectors, as they are
comprehensive, define the narrowest possible markets in the data, and rely on the most granular
information available to estimate employment per firm, which enhances precision.12 Second,
5+9
2 × 10 = 70.

12In this estimation, we suppose some firms are of the same size, which is a strong assumption. However, this
assumption becomes weaker with more granular data, since the number of firms assumed to have exactly the same
size decreases.
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we select only the 3-digit sectors that do not belong to a 2-digit sector with a high share of non-
enterprise formal organizations or that are considered unsuitable for the model (e.g., utilities).13

These initial sets of sectors are then adjusted to ensure the sectoral coverage remains con-
stant over time, avoiding distortions caused by changes in the sectors included each year. We
use two different methods. First, if a selected 3-digit sector is missing in Step 3 for at least
one year, we exclude all 3-digit sectors within the corresponding 2-digit sector and, if data are
available for all years, include this 2-digit sector. Second, we simply exclude all selected 3-digit
sectors with missing data in Step 3.

Step 5 – aggregating the results. Using the results from Step 3 for all sectors selected in Step 4,
we employ three methods to obtain the aggregate results for each year. First, assuming a single
national market, we compute Na as the total number of firms across all selected sectors, and
HHIL by plugging the employment of each firm in the selected sectors directly into HHIL =∑N

i=1

(
Li

L

)2
. Second, we compute NaHHIL for each selected sector and take the average.

Third, we calculate NaHHIL for each selected sector and use the median value.

Table 2 summarizes all the methods applied in computing the aggregate results, as discussed
in the presentation of the five steps. We use all possible combinations of these methods, result-
ing in 2× 3× 2× 2× 3 = 72 different time series of NaHHIL.

5 Results

Using the method discussed in Section 3 and the data and parameters from Section 4, we obtain
k, A, and A for Brazil in two steps. First, for a given time series of NaHHIL, we estimate the
model from 2006 to 2019, finding the time-invariant k. Second, with this k set, we estimate all
other model parameters from 2000 to 2019 using the first-stage algorithm of the quantification
method. Figure 4 presents the results based on NaHHIL as determined by the baseline methods
outlined in Table 2, which yield k = 3.19. Choosing any of the 72 time series of NaHHIL

would yield similar results, though, as all estimates of k are very close, ranging between 3 and
3.3. Note the results shown in Figures 4a, 4b, 4c, and 4d do not depend on TFP data. Therefore,
they are robust to different measures of labor and capital, including variations due to alternative
adjustments for input utilization. Only Figure 4e relies on TFP data, making it sensitive to input
measurements.

13The 19 excluded 2-digit sectors are: 35 – Electricity, gas and other utilities, 36 – Water collection, treatment
and distribution, 37 – Sewage and related activities, 38 – Collection, treatment and disposal of waste, and material
recovery, 39 – Decontamination and other waste management services, 68 – Real estate activities, 72 – Scientific
research and development, 81 – Services for buildings and landscape activities, 84 – Public administration, de-
fense and social security, 85 – Education, 86 – Human health care activities, 87 – Human health care activities
integrated with social assistance, provided in collective and private residences, 88 – Social assistance services
without accommodation, 90 – Artistic, creative and entertainment activities, 91 – Activities related to cultural and
environmental heritage, 92 – Gambling and betting exploration activities, 93 – Sports, recreation and leisure ac-
tivities, 94 – Activities of associative organizations, and 99 – International organizations and other extraterritorial
institutions.
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(a) Labor market concentration measure NaHHIL (b) Number of active firms Na

(c) Product market concentration measure NaHHIs (d) Allocative efficiency Ω

(e) TFP AΩ and technology frontier A

Figure 4: Estimates for the baseline model.
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Table 2: Alternative methods to compute NaHHIL

Step Topic Method
1 Imputation in the first bin (i) Average bin bounds × number of firms

(0 to 4 employees) (ii) Backed out as a residual (if possible)*
2 Data from the first bin (i) Included

(0 to 4 employees) (ii) Included only for firms with employees*
(iii) Excluded

4 Initial set of sectors (i) All 3-digit sectors*
(ii) Only selected 3-digit sectors

4 Sectors with missing data (i) Replaced by the corresponding 2-digit sectors*
(ii) Excluded

5 Aggregation method (i) National market
(ii) Sectors’ average
(iii) Sectors’ median*

*Baseline methods.

Consistent with our quantification strategy, the model perfectly reproduces TFP AΩ and the
average markup µ, but not NaHHIL, as we aim only to minimize the distance to this moment
normalized. This is shown in Figure 4a, where the actual NaHHIL is normalized to match
the average and standard deviation of the model’s time series from 2006 to 2019. In any case,
the model fits the normalized data well, with a correlation of 0.67 and capturing the observed
upward trend. It is also worth noting the model series varies very little, remaining between
1.332 and 1.335.

Another way to assess the model fit is by evaluating the number of active firms Na. To
compute the actual number of firms, we use data from Section 4.4 and the baseline methods
highlighted in Table 2, but now applied to Na.14 To compute Na in the model, we use Equa-
tion (3), with η replaced by η/q as in its continuous version, assuming η/q is time-invariant.
Analogous to NaHHIL, accurately identifying the level of the actual Na requires knowing the
relevant market for each firm in the economy. Given this, we evaluate the model fit only after
a normalization, as shown in Figure 4b, where both series are divided by their 2006–2019 av-
erages. This approach allows us to choose any feasible adjusted elasticity η/q (e.g., η/q = 1),
since changing it would simply multiply the model series by a constant. As can be seen, even
though it is not a target moment, the model has a good fit, with the series being highly cor-
related (correlation of 0.85) and the model capturing the observed upward trend. The errors
are concentrated around periods of economic crises (2008–2009 and 2015–2016), when a static
model is expected to perform poorly.15 For instance, during these times, firms’ use of labor
input is likely far from the model’s optimum, meaning 1−α

LS
would not properly measure the

cost-weighted average of markup µ.

14Hence, for each year, we calculate Na for all selected sectors and then take the median to obtain the represen-
tative value.

15Brazil experienced an intense economic crisis during 2015–2016, with GDP falling 7% in 2015 and 2016
(3.4% per year).
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We could assess the concentration in the product market using NaHHIs. Unfortunately,
we do not have the information required to compute it using actual data, but we can obtain
the model’s predictions from Equation (8). Figure 4c displays these estimates, which indicate
an increase in product market concentration until 2004, a downward trend between 2005 and
2015, and a slight increase from 2016 to 2019. Additionally, NaHHIs and NaHHIL behave
very differently: they are negatively correlated (correlation of -0.92), and NaHHIs exhibits
much more variation.

Figure 4d presents the estimated allocative efficiency Ω. It shows an upward trend, reflect-
ing the observed increase in the labor income share and, consequently, the estimated decrease
in the average markup. This is a sharp contrast with most developed countries, which have
experienced a decreasing labor share and increasing average markup over the last decades (e.g.,
Calligaris et al. 2018, De Loecker and Eeckhout 2018, and Autor et al. 2020). Accordingly,
Baqaee and Farhi (2020) find the distance from optimal allocation widened in 2015 compared
to 1997 in the US. Moreover, note Ω exhibits trends similar to NaHHIs, but with reversed signs
(correlation of -0.9998): it decreases until 2004, increases from 2005 to 2015, and slightly de-
creases from 2016 onwards. Thus, NaHHIs appears to be a good proxy for Ω, with higher
(lower) NaHHIs indicating lower (higher) Ω. Finally, Ω is procyclical, showing a correlation
of 0.88 with GDP.

Therefore, allocative efficiency Ω increases during booms and decreases during busts, sim-
ilar to TFP AΩ, which exhibits a 0.97 correlation with GDP. This suggests that TFP net of
allocative efficiency effects, represented by the technology frontier A, should exhibit more sta-
ble growth compared to TFP. This is illustrated in Figure 4e, which plots AΩ and A, both
adjusted to equal 100 in 2000. Using these adjusted series, we find a standard deviation of 8.39
for AΩ and 6.01 for A. Similarly, when detrending both series using linear trends, TFP shows a
higher standard deviation (1.93) compared to A (1.54). These results are easier to see in Table
3, which presents the average annual growth of GDP Y , TFP AΩ, technology frontier A, and
allocative efficiency Ω for the full sample (2000–2019) and four subperiods: (i) the pre-boom
period (2000–2003), (ii) the boom period (2003–2007), (iii) the crises period (2007–2016), and
(iv) the post-crises period (2016–2019). The results for these subperiods show TFP AΩ is more
volatile than the technology frontier A, which exhibits a relatively stable growth rate: 0.89%
for 2000–2003, 1.09% for 2003–2007, 0.82% for 2007–2016, and 0.81% for 2016–2019.

Table 3: Average annual growth of GDP, TFP, and its components for the baseline model, %

Variable 2000–19
Subperiods

2000–03 2003–07 2007–16 2016–19
GDP Y 2.28 1.86 4.74 1.62 1.44
TFP AΩ 1.1 0.48 1.54 1.34 0.43

Technology frontier A 0.89 0.89 1.09 0.82 0.81
Allocative efficiency Ω 0.21 -0.41 0.44 0.52 -0.37
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These results suggest TFP cycles are primarily driven by changes in allocative efficiency.
For instance, the rapid productivity gains observed between 2003 and 2016 are largely at-
tributable to Ω, which grows at 0.5% per year during this period, compared to -0.4% in 2000–
2003 and 2016–2019. In contrast, the technology frontier grows more steadily, indicating A is
the most structural component of TFP. This annual technology growth rate of 0.9% can be inter-
preted as the current long-run growth level of Brazilian TFP, since Ω ∈ (0, 1] and consequently
it cannot increase or decrease indefinitely.

6 Robustness

In this section, we conduct four robustness exercises. First, we consider a uniform distribu-
tion by setting k = −1, when the model quantification requires only macroeconomic data.
As argued by Martinez and Santos (2024), given the reasonable and common assumption that
high-productivity firms are relatively scarce, this value of k yields the most conservative re-
sults compared to standard growth-accounting exercises, which attribute all TFP variations to
technology changes. Second, instead of our baseline calibration of α = 0.39, we explore the
standard α = 1/3 and α = 0.41, the highest calibration from Section 4.2. Third, we experiment
with alternative labor income share series, treating self-employment income (mixed income)
differently. Finally, we select a distribution for firm market share that is consistent with Zipf’s
law, rather than imposing a productivity density as done in Section 3.1. Overall, these exercises
do not disprove the main conclusions presented in Section 5.

6.1 Shape parameter of the truncated Pareto distribution

As discussed in Section 3.3 based on Figure 1, changes in LS appear to have a smaller impact on
Ω when k is lower. This suggests reducing k would result in a less volatile allocative efficiency
Ω and, consequently, a more volatile technology frontier A. In other words, a lower k would
yield more conservative results compared to standard growth-accounting exercises, where all
TFP growth is attributed to technology improvement. Indeed, Martinez and Santos (2024) show
Ω → 1 as k → −∞, causing their model’s residual AΩ to converge to the standard growth-
accounting residual A in this limiting case. Consequently, it would be useful to establish a lower
bound for k. Assuming high-productivity firms are relatively scarce, this lower bound is k =

−1, since the truncated Pareto density is downward sloping only for k > −1, k ̸= 0, becoming
upward sloping for k < −1 and constant for k = −1 (uniform distribution). This assumption
is not only economically reasonable but is also commonly adopted, often by imposing a non-
truncated Pareto distribution for firms’ productivity. In short, the most conservative reasonable
TFP decomposition is achieved when productivity is uniformly distributed.

Table 4 presents the new TFP decomposition, computed using the first-stage algorithm of the
quantification method, which relies solely on macroeconomic data. In this approach, µ = 1−α

LS
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is used to estimate Ω, with A subsequently backed out as a residual from the TFP AΩ. The
results reveal expected differences, particularly the higher variability in the growth of A across
the subperiods under k = −1. However, the technology component A continues to grow more
steadily than the TFP AΩ, with TFP cycles typically driven by allocative efficiency Ω. All in
all, the main findings appear robust to conservatively setting k = −1.

6.2 Share parameter of the Cobb-Douglas production function

In Section 4.2, we calibrated α = 0.39 using cost share data. Here, we assess the robustness of
our results to this parameter choice. Specifically, we re-estimate the model parameters (includ-
ing β) for (i) the lower standard α = 1/3 and (ii) α = 0.41, the highest calibration from Section
4.2, obtained by adding corporate income tax and adjusting the capital cost recovery rate to the
2021 OECD average level. As shown in Table 4, the results for α = 0.41 are practically iden-
tical to the baseline findings. More noticeable differences emerge with α = 1/3, but the main
conclusions remain valid: the technology frontier A grows more steadily than TFP AΩ, and
TFP cycles are driven by allocative efficiency Ω. A noteworthy difference is that A decelerated
during the TFP boom of 2003–2016, which is counterintuitive and suggests this value of α may
be excessively low for Brazil.

6.3 Labor share of national income

One major challenge in computing the labor income share is accurately gauging the labor in-
come of self-employed workers, as National Accounts typically only disclose the total income
earned by such workers, known as mixed income. This is particularly important in developing
countries like Brazil, where a substantial portion of the workforce is self-employed.16 Gollin
(2002) suggests various methods to address this challenge. One approach is to allocate mixed
income to labor and non-labor in the same proportions as the rest of the economy. As discussed
in Section 4.1, this method is our baseline methodology and is also the preferred method of the
Penn World Table 10.01. Alternatively, Gollin (2002) proposes allocating all mixed income to
labor, which provides an upper bound for the labor income share LS. A lower bound for LS
can be obtained by allocating no mixed income to labor, which is the naı̈ve approach criticized
by Gollin (2002). These three LS series are illustrated in Figure 5. While they are highly
correlated, they exhibit different levels, as expected.

As robustness exercises, we apply our methodology using these two alternative labor income
share estimates. For each new series, we first recalculate the capital cost share, which will be
higher for lower labor income shares, and then re-calibrate α following the procedure outlined
in Section 4.2. Using the upper-bound (lower-bound) LS series, we find α to be 0.37 (0.41).
Nonetheless, the average markup µ = 1−α

LS
decreases as the labor income share LS increases,

16In Brazil, approximately a quarter of employed individuals are self-employed, according to the 2012–2022
quarterly data from the National Household Sample Survey (PNAD), which is conducted by IBGE.
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Table 4: Average annual growth of GDP, TFP, and its components, %

Variable 2000–19
Subperiods

2000–03 2003–07 2007–16 2016–19
Baseline model
TFP AΩ 1.1 0.48 1.54 1.34 0.43

Technology frontier A 0.89 0.89 1.09 0.82 0.81
Allocative efficiency Ω 0.21 -0.41 0.44 0.52 -0.37

Robustness #1: uniform distribution (k = −1)
TFP AΩ 1.1 0.48 1.54 1.34 0.43

Technology frontier A 0.95 0.74 1.26 0.95 0.74
Allocative efficiency Ω 0.15 -0.26 0.28 0.38 -0.3

Robustness #2: α = 1/3

TFP AΩ 1.13 0.49 1.52 1.43 0.36
Technology frontier A 0.81 1.14 0.82 0.66 0.9
Allocative efficiency Ω 0.32 -0.64 0.69 0.76 -0.53

Robustness #3: α = 0.41
TFP AΩ 1.09 0.47 1.55 1.3 0.46

Technology frontier A 0.9 0.83 1.17 0.85 0.79
Allocative efficiency Ω 0.18 -0.35 0.37 0.44 -0.32

Robustness #4: upper-bound LS series
TFP AΩ 1.11 0.48 1.53 1.37 0.41

Technology frontier A 1.07 0.79 1.55 1.09 0.68
Allocative efficiency Ω 0.03 -0.3 -0.02 0.27 -0.27

Robustness #5: lower-bound LS series
TFP AΩ 1.09 0.47 1.55 1.29 0.46

Technology frontier A 0.47 0.92 -0.02 0.39 0.94
Allocative efficiency Ω 0.61 -0.44 1.57 0.9 -0.47

Robustness #6: Zipf’s law calibration (k = 0.5)
TFP AΩ 1.1 0.48 1.54 1.34 0.43

Technology frontier A 0.89 0.87 1.12 0.82 0.81
Allocative efficiency Ω 0.21 -0.39 0.42 0.51 -0.37

Robustness #7: Zipf’s law calibration (k = 1)
TFP AΩ 1.1 0.48 1.54 1.34 0.43

Technology frontier A 0.89 0.87 1.11 0.82 0.81
Allocative efficiency Ω 0.21 -0.39 0.42 0.51 -0.37

Robustness #8: Zipf’s law calibration (k = 1.5)
TFP AΩ 1.1 0.48 1.54 1.34 0.43

Technology frontier A 0.89 0.88 1.11 0.82 0.81
Allocative efficiency Ω 0.21 -0.39 0.42 0.51 -0.37

27



Figure 5: Series of the labor income share LS.

which is not unexpected.17 Finally, for each alternative series, we use the new α and LS values
to re-estimate the other parameters, including β.

The results shown in Table 4 for the upper-bound LS series continue to support that the tech-
nology component A grows more steadily than the TFP AΩ itself, with allocative efficiency Ω

remaining an important driver of TFP cycles. However, the cyclical role of technology becomes
significantly more important in this case. Specifically, while the high TFP growth between 2007
and 2016 is largely attributed to Ω, the greater growth from 2003 to 2007 is primarily driven by
A. Over the 2003–2016 period as a whole, we find nearly equal contributions from these two
components.18 This increased importance of the technology component arises because it be-
comes more pro-cyclical, as allocative efficiency becomes less pro-cyclical, due to two reasons.
On the one hand, the labor share is highly positively correlated with GDP, with a correlation
of 0.88. On the other hand, a higher LS results in a smaller µ, and under these conditions, the
impact of changes in µ on allocative efficiency Ω is smaller, as illustrated in Figure 1.

By analogous reasoning, one should expect a more pro-cyclical allocative efficiency Ω for
the lower-bound LS series, with Ω playing an even greater role in explaining TFP cycles. The
results shown in Table 4 are consistent with this expectation. Indeed, Ω is so cyclical that
the residual A becomes significantly more volatile and, notably, countercyclical. For example,

17Since α = Kr
Kr+Lw = KS

KS+LS , where KS represents the capital share of national income, we have µ =

1−α
LS =

1− KS
KS+LS

LS = 1
KS+LS .

18From 2003 to 2016, the annual growth of TFP AΩ was 1.42%, with A growing at 1.23% and Ω at 0.18%.
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between 2000–2003 and 2003–2007, the growth of the technology frontier A decreased while
GDP and TFP accelerated, which appears counterintuitive. This suggests the naı̈ve approach
to computing the labor income share is inappropriate for a developing economy like Brazil, as
argued by Gollin (2002).

In short, the results change qualitatively only under the unreasonable assumption that no
mixed income is attributed to labor. Allocating all mixed income to labor increases the variance
of the technology component, but it still grows more steadily than the TFP itself, with allocative
efficiency remaining a key driver of TFP cycles.

6.4 Zipf’s law calibration

Until now, we have always quantified the model under the assumption that firm productivity
A is Pareto distributed. While this assumption is relatively standard in the literature, assessing
its reasonableness is challenging since firm productivity is rarely observable. What can be
more easily observed is the distribution of firm size, which typically follows a distributional
power law known as Zipf’s law.19 Formally, under this “law,” P (s ≥ S) = (S/S)k for some
measure of firm size s ≥ S, with k ≈ 1. Empirical evidence supporting this claim has been
found across several different countries, with firm size measured by the number of employees,
sales, income, total assets, and equity plus debt (Okuyama et al. 1999, Axtell 2001, Fujiwara
et al. 2004, Luttmer 2007, Gabaix and Landier 2008, Di Giovanni et al. 2011, and Di Giovanni
and Levchenko 2013). Specifically in Brazil, Da Silva et al. (2018) find support for Zipf’s
law among the 1,000 largest firms by net revenue in 2015. Additionally, Santos and Cajueiro
(2024) evaluate the distribution of firm size by the number of employees using CEMPRE data.
Remarkably, they find Zipf’s law provides a very good, though not perfect, approximation to
data for each year between 1996 and 2020, both at the economy-wide level and within the
agriculture, industry, and services sectors.

Given this scenario, instead of choosing a density for A, we now impose a distribution for
firm market share s(A).20 As before, we opt to use a continuous distribution, consistent with
the continuous version of the model. However, we cannot assume market share follows a non-
truncated Pareto distributed with shape parameter k ≈ 1, when Zipf’s law would hold over the
entire support. On the one hand, a truncated distribution is necessary because market share is
bounded. On the other hand, since s(A) = 0, the support of the market share distribution is
not strictly greater than 0. Under such circumstances, we assume the market share s(A) fol-
lows a truncated Lomax distribution, which is a special case of the truncated Pareto type II.
Specifically, we assume s̃(A) ≡ 1 − A/A = s(A)

η/q
∈

[
0, s̃(A)

]
=

[
0, 1− Ã−1

]
is truncated

Lomax distributed with shape parameter k ̸= 0 and scale parameter λ > 0, or equivalently,

19Power laws emerge in various domains within economics and finance. See Gabaix (2009, 2016) for a review.
20In monopolistic competition models like Melitz (2003), supposing firm productivity is Pareto distributed re-

sults in a distributional power law of firm size (Di Giovanni et al. 2011). This does not hold for the Cournot model
of Martinez and Santos (2024).
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(s̃(A) + λ) ∈ [λ, s̃(A) + λ] is truncated Pareto distributed with shape parameter k ̸= 0. There-
fore, for λ ≈ 0, firm market share is approximately truncated Pareto distributed. If we further
assume k ≈ 1, the distribution aligns with Zipf’s law predictions, particularly away from the
bounds of the support (see Appendix C.1 for a discussion).

We left the details to Appendix C, but we essentially follow the same two-stage procedure
outlined in Section 3.3 to quantify the model. In the first stage, given k and λ, we gauge A and
A by matching aggregate TFP AΩ and average markup µ. In the second stage, we set k ≈ 1 and
search for the time-invariant λ that minimizes the distance to the normalized NaHHIL. Similar
to the baseline Pareto case, TFP data are not required to estimate Ω, not even through λ. They
are used solely to pin down A and A. Hence, as before, the residual in this model is not the TFP
AΩ itself, but rather only its technology component A.

Table 4 presents the TFP decomposition under the new distribution for k = 0.5, 1, 1.5. The
results are practically identical to those of the baseline model across all three shape parameters.
The estimated scale parameter λ is 0.55, 0.76, and 0.97 for k equal to 0.5, 1, and 1.5, respec-
tively. Thus, the choice of k does not seem to be crucial, as varying k affects the calibrated λ in
the second stage, leaving the main model results basically unchanged.21

7 Conclusion

This paper employs the Cournot model of Martinez and Santos (2024) to decompose Brazilian
TFP into technology and allocative efficiency components from 2000 to 2019. Over these two
decades, we observe an overall improvement in allocative efficiency, reflecting an increase in
the labor income share and a corresponding decrease in the average markup. Additionally, we
find the cycles in TFP are predominantly driven by allocative efficiency, with the mid-2000s
economic boom primarily attributed to efficiency gains. In contrast, the technology component
grows more steadily, suggesting it reflects structural characteristics of the economy. Therefore,
since allocative efficiency cannot increase or decrease indefinitely, the technology growth rate,
of around 0.9% per year, can be interpreted as the current long-run growth rate of Brazilian
TFP.

The main conclusions are robust to using conservatively a uniform distribution, when the
model quantification requires only macroeconomic data. They are also robust to adopting the
standard α = 1/3 or α = 0.41 instead of our baseline calibration of α = 0.39. Using a higher
labor income share, with all mixed income allocated to labor, does not substantially alter our
main conclusions either. Finally, the results remain unchanged when we assume the distribution
of firm market share is consistent with Zipf’s law rather than imposing a productivity density.

21When seeking both k ̸= 0 and λ > 0 in the second stage, we find very high values: k ≈ 212 and λ ≈ 90.
Despite these high values, the TFP decomposition remains practically identical to the baseline model, further
confirming this intuition.
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Appendices

A Derivation of two concentration measures

In this section, we derive expressions for two measures of concentration. First, the Herfind-
ahl–Hirschman index (HHI) of the labor market, defined as HHIL ≡

∑N
i=1(Li/L)

2, where Li

is the labor employed by firm i ∈ {1, 2, ..., N} and L ≡
∑N

i=1 Li. Second, the HHI of the prod-
uct market, defined as HHIs ≡

∑N
i=1 s(Ai)

2, where s(Ai) is the market share of an active firm
with productivity Ai. We start with the baseline model, used in the main text, and subsequently
examine two model extensions.

A.1 Baseline model

Martinez and Santos (2024) derive the following results for the discrete version of the model:

θi ≡ θLi = θKi =AΩ
s(Ai)

Ai

(A.1)

s(Ai) ≈η (1− A/Ai) (2)

η ≈ 1

Na [1− Ea (A/A)]
(3)

Ω ≈
Ea

[
(A/A)(1− A/A)

]
Ea [(A/A)(1− A/A)]

(5)

µ ≈AΩ

A
, (6)

where θLi ≡ Li/L and θKi ≡ Ki/K, with Ki being the capital stock of firm i and K ≡∑N
i=1Ki. Aggregate TFP is denoted by AΩ, with Ω being a measure of allocative efficiency

and A the productivity of the most efficient firm. Moreover, A is the lowest productivity level
among active firms, η is the absolute value of the price elasticity of demand, Na is the number
of active firms, and Ea (h(A)) is the expected value of a function h over active firms under the
empirical distribution. Finally, being µi the markup of firm i, w the wage, and r the rental cost
of capital, µ ≡

∑N
i=1

(
Liw+Kir
Lw+Kr

)
µi is the cost-weighted average of firm-level markups.

Using these results, let us derive expressions for the two measures of concentration pre-
sented earlier. First, the HHI of the labor market HHIL ≡

∑N
i=1 θ

2
Li. Plugging (A.1) into this

definition and using (2) and (3),

HHIL =
N∑
i=1

[
AΩ

s(Ai)

Ai

]2
≈

[
Ω(A/A)

1− Ea (A/A)

]2
Ea

[
(A/A)2 (1− A/A)2

]
Na

NaHHIL ≈Ω2 Ea

[
(A/A)2 (1− A/A)2

]{
Ea

[
(A/A) (1− A/A)

]}2
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NaHHIL ≈
Ea

[
(A/A)2 (1− A/A)2

]
{Ea [(A/A)(1− A/A)]}2

, (7)

where in the last line we use (5). Second, the HHI of the product market HHIs ≡
∑N

i=1 s(Ai)
2.

Plugging (2) and (3) into it, one gets

NaHHIs ≈
Ea

[
(1− A/A)2

]
[Ea (1− A/A)]2

≈ 1− 1/µ

1− Ea (A/A)
, (8)

where in the last part we use (5) and (6), since, from these equations,

1− 1

µ
≈1− A

AΩ
≈ 1− Ea [(A/A)(1− A/A)]

1− Ea (A/A)

1− 1

µ
≈1− 2Ea (A/A) + Ea [(A/A)

2]

1− Ea (A/A)
=

Ea [(1− A/A)2]

1− Ea (A/A)
. (A.2)

In the continuous version of the model, where firms are indexed by i ∈ [0, N ], the results
presented at the beginning of this section remain valid, but now holding exactly, provided that
(i) η is replaced by η/q, with q ∈ (0, 1] representing the marginal effect of increasing a firm’s
output on aggregate output considered by each firm, and (ii) integrals are used instead of sums
(e.g., Y ≡

∫ N

0
Yidi). Given that, Equations (7) and (8) are also valid for the continuous model,

but in this case holding exactly. Naturally, the measures of concentration should be defined
accordingly as HHIL ≡

∫ N

0
θ2Lidi and HHIs ≡

∫ N

0
s(Ai)

2di.

A.2 Model extensions

Martinez and Santos (2024) discuss two model extensions. In the first extension, they go be-
yond the Cobb-Douglas production function, considering an arbitrary well-behaved production
function with M factors of production, provided it exhibits (i) constant returns to scale and (ii)
Hicks-neutral productivity shifter. In this case, they show the baseline Equations (A.1), (2), (3),
(5), and (6) are still valid, implying (7) and (8) continue to hold (exactly for a continuum of
firms).22 In the second extension, they add firm-specific wedges as a new source of firm hetero-
geneity, considering firm-specific tax rate over revenue τi = τ(Ai). In this case, for a discrete
number of firms,

θi ≡ θLi = θKi =AΩ
s(Bi)

Ai

(A.1”)

s(Bi) ≈η (1−B/Bi) (2”)

η ≈ 1

Na [1− Ea (B/B)]
(3”)

22Naturally, for HHIL to make sense, labor should be one of the factors of production.
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Ω ≈
Ea

[
(A/A)(1−B/B)

]
Ea [(A/A)(1−B/B)]

(5”)

µ ≈AΩ

B
(1− τ̃) , (6”)

where s(Bi) is the market share of a firm with adjusted productivity Bi ≡ Ai (1− τ(Ai)), B is
the lowest level of the adjusted productivity Bi among active firms, and τ̃ ≡

∑N
i=1 s(Bi)τ(Ai)

is the sales-weighted average tax rate. As a result, plugging (A.1”) into HHIL ≡
∑N

i=1 θ
2
Li and

using (2”) and (3”),

NaHHIL ≈(AΩ)2
Ea

[
((1/A)−B/(A×B))2

]
[1− Ea (B/B)]2

=

(
AΩ

A

)2
Ea [(A/A)

2(1−B/B)2]

[1− Ea (B/B)]2

NaHHIL ≈ Ea [(A/A)
2(1−B/B)2]

{Ea [(A/A)(1−B/B)]}2
, (7”)

where in the last line we use (5”). Finally, plugging (2”) and (3”) into HHIs ≡
∑N

i=1 s
2
i ,

NaHHIs ≈
Ea

[
(1−B/B)2

]
[Ea (1−B/B)]2

. (8”)

By analogous reasoning to that employed previously for the baseline model, Equations (7”) and
(8”) would be exactly valid with a continuum of firms. As before, in this case, one should define
HHIL ≡

∫ N

0
θ2Lidi and HHIs ≡

∫ N

0
s(Ai)

2di.
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B Conditions for the first-stage algorithm to work properly

Martinez and Santos (2024) establish necessary and sufficient conditions for the first-stage al-
gorithm to function properly, ensuring an exact match of both target moments. Initially, they
derive some general results by examining an arbitrary truncated distribution, with the only re-
quirement being that its density can be expressed as an upper truncation of another distribution.
These general findings provide a framework for establishing conditions applicable to any such
distribution. Martinez and Santos (2024) utilize this framework to assess the case where firm
productivity is truncated Pareto distributed. Here, we apply it to the case where firm market
share follows a truncated Lomax distribution, demonstrating the conditions under which (10)
implicitly defines Ã ≡ A/A as a well-defined function of µ.

In the following, consider µ as given in (10) or, equivalently,

µ =
Ea (1− A/A)

Ea (1− A/A)− Ea [(1− A/A)2]
, (10)

where Ea (h(A)) ≡ E
(
h(A)|A ≤ A ≤ A

)
for any function h.

B.1 Arbitrary distribution

Assume A ∈ [A,A] is a continuous variable, 0 < A < A < +∞, whose density and cumulative
distribution function are g and G, respectively. Let g̃(A) ≡ g(A)

1−G(A)
> 0, A ∈ (A,A), the density

function of A ∈ [A,A], with cumulative distribution G̃. Let ĝ be another density of A, but
defined over the support A ∈ [A,Ah], Ah > A, possibly with Ah → +∞. This density does not
depend on A and has cumulative distribution function Ĝ. Moreover, it satisfies g̃(A) = ĝ(A)

Ĝ(A)
,

meaning g̃ is an upper truncation of ĝ.

Proposition B.1 A, A > A, is a continuous, strictly increasing, and well-defined function of µ

if and only if µ ∈
(
1, limA→+∞ µ

)
.

Proof. See Martinez and Santos (2024).

B.2 Lomax distribution of firm market share

Let s̃(A) ≡ 1 − A/A for A ∈ [A,A] ∈ (0,+∞), with Ã ≡ A/A > 1. Assume s̃(A) ∈
[0, s̃(A)] = [0, 1 − Ã−1] is truncated Lomax distributed with shape parameter k ̸= 0 and scale
parameter λ > 0 or, equivalently, (s̃(A)+λ) ∈ [λ, s̃(A)+λ] is truncated Pareto distributed with
the same parameter k ̸= 0. Hence, the density of s̃(A) is g̃s(s̃(A)) = k

[
λk(s̃(A)+λ)k

(s̃(A)+λ)k−λk

]
(s̃(A) +

λ)−k−1 = k
(

λkSk

Sk−1

)
(s̃(A) + λ)−k−1, where S ≡ s̃(A)

λ
+ 1 is a function of Ã and λ. Denote by

G̃s the cumulative distribution function of s̃(A). In the following, let µ ≡ limA→+∞ µ.
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Proposition B.2 For k ̸= 0, λ > 0, and j ∈ N \ {0},

Ea

[
(s̃(A) + λ)j

]
=


kλj

j−k

(
Sj−Sk

Sk−1

)
, if j ̸= k

kλk
(

Sk lnS
Sk−1

)
, if j = k

.

Proof. Let k ̸= 0, λ > 0, and j ∈ N \ {0}. From the truncated Lomax density, if j ̸= k,

Ea

[
(s̃(A) + λ)j

]
=k

(
λkSk

Sk − 1

)∫ s̃(A)

0

(s+ λ)j−k−1ds = k

(
λkSk

Sk − 1

)[
(s̃(A) + λ)j−k − λj−k

j − k

]
Ea

[
(s̃(A) + λ)j

]
=k

(
λkSk

Sk − 1

)[
Sj−k − 1

(j − k)λk−j

]
=

kλj

j − k

(
Sj − Sk

Sk − 1

)
,

while, if j = k, Ea [(s̃(A) + λ)j] = k
(

λkSk

Sk−1

) [
ln(s̃(A) + λ)− ln(λ)

]
= kλk

(
Sk lnS
Sk−1

)
.

Proposition B.3 For λ > 0, µ =


k(S−1)−(Sk−1)

(1+ 2λ
2−k)[k(S−1)−(Sk−1)]−λk(1−k)

2−k
(S−1)2

, if k ̸= 0, 1, 2

S lnS−(S−1)
(1+2λ)[S lnS−(S−1)]−λ(S−1)2

, if k = 1

(S−1)2

2(1+2λ)S(S−1)−2λS2 lnS−(1+λ)(S2−1)
, if k = 2

.

Proof. Let λ > 0. Initially, note Equation (10) can be rewritten as

µ =
Ea (1− A/A)

Ea (1− A/A)− Ea [(1− A/A)2]
=

Ea (s̃(A))

Ea (s̃(A))− Ea [s̃(A)2]

µ =
Ea (s̃(A) + λ)− λ

Ea (s̃(A))− Ea

[
(s̃(A) + λ)2

]
+ λ2 + 2λEa [s̃(A)]

µ =
Ea (s̃(A) + λ)− λ

(1 + 2λ)Ea (s̃(A) + λ)− λ(1 + 2λ)− Ea

[
(s̃(A) + λ)2

]
+ λ2

µ =
Ea (s̃(A) + λ)− λ

(1 + 2λ)Ea (s̃(A) + λ)− Ea

[
(s̃(A) + λ)2

]
− λ(1 + λ)

,

since s̃(A) ≡ 1− A/A, where Ea [h(s̃(A))] =
∫ s̃(A)

s̃(A)
h(s)g̃s(s)ds for a function h.

Therefore, if k = 1, using Proposition B.2 one can see that

µ =
λ
(
S lnS
S−1

)
− λ

(1 + 2λ)λ
(
S lnS
S−1

)
− λ2

(
S2−S
S−1

)
− λ(1 + λ)

µ =
S lnS − (S − 1)

(1 + 2λ)S lnS − λS(S − 1)− (1 + 2λ− λ)(S − 1)

µ =
S lnS − (S − 1)

(1 + 2λ) [S lnS − (S − 1)]− λ(S − 1)2
.
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If k = 2, from Proposition B.2,

µ =
2λ

(
S2−S
S2−1

)
− λ

(1 + 2λ)2λ
(
S2−S
S2−1

)
− 2λ2

(
S2 lnS
S2−1

)
− λ(1 + λ)

µ =
2S(S − 1)− (S2 − 1)

2(1 + 2λ)S(S − 1)− 2λS2 lnS − (1 + λ)(S2 − 1)

µ =
(S − 1)2

2(1 + 2λ)S(S − 1)− 2λS2 lnS − (1 + λ)(S2 − 1)
.

Finally, if k ̸= 0, 1, 2,

µ =

kλ
1−k

(
S−Sk

Sk−1

)
− λ

(1 + 2λ) kλ
1−k

(
S−Sk

Sk−1

)
− kλ2

2−k

(
S2−Sk

Sk−1

)
− λ(1 + λ)

µ =
k

1−k
(S − Sk)− (Sk − 1)

(1 + 2λ) k
1−k

(S − Sk)− λ k
2−k

(S2 − Sk)− (1 + 2λ− λ)(Sk − 1)

µ =
k

1−k
(S − Sk)− (Sk − 1)

(1 + 2λ)
[

k
1−k

(S − Sk)− (Sk − 1)
]
− λ

[
k

2−k
(S2 − Sk)− (Sk − 1)

]
µ =

k(S−1)−(Sk−1)
1−k

(1 + 2λ)
[
k(S−1)−(Sk−1)

1−k

]
− λ

2−k
[k(S2 − 1)− 2(Sk − 1)]

µ =
k(S − 1)− (Sk − 1)

(1 + 2λ) [k(S − 1)− (Sk − 1)]− λ(1−k)
2−k

[2k(S − 1)− 2(Sk − 1) + k(S − 1)2]

µ =
k(S − 1)− (Sk − 1)[

(1 + 2λ)− 2λ(1−k)
2−k

]
[k(S − 1)− (Sk − 1)]− λ(1−k)

2−k
[k(S − 1)2]

µ =
k(S − 1)− (Sk − 1)(

1 + 2λ
2−k

)
[k(S − 1)− (Sk − 1)]− λk(1−k)

2−k
(S − 1)2

,

where we once again use Proposition B.2.

Proposition B.4 For λ > 0, µ =



1

(1+ 2λ
2−k)−

k(1−k)/(2−k)

k−λ

[
(λ+1

λ )
k
−1

] , if k ̸= 0, 1, 2

1

(1+2λ)−[(λ+1) ln(λ+1
λ )−1]

−1 , if k = 1

1

(1+2λ)(λ+1)−2λ(λ+1)2 ln(λ+1
λ )

, if k = 2

.

Proof. Let λ > 0. Since S ≡ s̃(A)
λ

+1 and s̃(A) ≡ 1−A/Ai, S = 1−Ã−1

λ
+1. Hence, S → λ+1

λ

as A → +∞, implying µ ≡ limA→+∞ µ = limS→λ+1
λ

µ. As a result, if k = 1, from Proposition
B.3,

lim
A→+∞

µ = lim
S→λ+1

λ

S lnS − (S − 1)

(1 + 2λ) [S lnS − (S − 1)]− λ(S − 1)2
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lim
A→+∞

µ =
(λ+ 1) ln

(
λ+1
λ

)
− 1

(1 + 2λ)
[
(λ+ 1) ln

(
λ+1
λ

)
− 1

]
− 1

=
1

(1 + 2λ)−
[
(λ+ 1) ln

(
λ+1
λ

)
− 1

]−1 .

If k = 2, using Proposition B.3,

lim
A→+∞

µ = lim
S→λ+1

λ

(S − 1)2

2(1 + 2λ)S(S − 1)− 2λS2 lnS − (1 + λ)(S2 − 1)

lim
A→+∞

µ =
1
λ2

2(1 + 2λ)
(
λ+1
λ

) (
1
λ

)
− 2λ

(
λ+1
λ

)2
ln
(
λ+1
λ

)
− (1 + λ)

(
1+2λ
λ

) (
1
λ

)
lim

A→+∞
µ =

1

(1 + 2λ) (λ+ 1)− 2λ (λ+ 1)2 ln
(
λ+1
λ

) .
Finally, if k ̸= 0, 1, 2,

lim
A→+∞

µ = lim
S→λ+1

λ

k(S − 1)− (Sk − 1)(
1 + 2λ

2−k

)
[k(S − 1)− (Sk − 1)]− λk(1−k)

2−k
(S − 1)2

lim
A→+∞

µ =
1(

1 + 2λ
2−k

)
− [λk(1−k)

2−k ] 1
λ2

k
λ
−
[
(λ+1

λ )
k
−1

] =
1(

1 + 2λ
2−k

)
− k(1−k)/(2−k)

k−λ
[
(λ+1

λ )
k
−1

] ,

where we again use Proposition B.3.

Proposition B.5 For λ > 0 and k ∈ (0, 2], ∂µ
∂λ

> 0.

Proof. Let λ > 0. It is sufficient to show ∂(1/µ)
∂λ

< 0 for k ∈ (0, 2]. If k = 1, from Proposition
B.4,

∂(1/µ)

∂λ
=
∂
[
(1 + 2λ)−

[
(λ+ 1) ln

(
λ+1
λ

)
− 1

]−1
]

∂λ

∂(1/µ)

∂λ
=2 +

ln
(
λ+1
λ

)
+ λ

(
− 1

λ2

)[
(λ+ 1) ln

(
λ+1
λ

)
− 1

]2 =
2
[(

λ+1
λ

)
ln
(
λ+1
λ

)
− 1

λ

]2
+ 1

λ2 ln
(
λ+1
λ

)
− 1

λ3

λ−2
[
(λ+ 1) ln

(
λ+1
λ

)
− 1

]2 .

Being y ≡ λ+1
λ

→ λ = 1
y−1

,

f(y) ≡2

[(
λ+ 1

λ

)
ln

(
λ+ 1

λ

)
− 1

λ

]2
+

1

λ2
ln

(
λ+ 1

λ

)
− 1

λ3

f(y) =2 [y ln y − (y − 1)]2 + (y − 1)2 ln y − (y − 1)3 → f(1) = 0

f ′(y) =4 [y ln y − (y − 1)] ln y + 2(y − 1) ln y +
(y − 1)2

y
− 3(y − 1)2

f ′(y) =2 [2y ln y − (y − 1)] ln y + (y − 1)2
(
1

y
− 3

)
→ f ′(1) = 0
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f ′′(y) =2

[
2 ln y −

(
y − 1

y

)]
+ 2 (2 ln y + 1) ln y + 2(y − 1)

(
1

y
− 3

)
+ (y − 1)2

(
− 1

y2

)
f ′′(y) = ln y (4 ln y + 6)−

(
y − 1

y

)2

− 6(y − 1) → f ′′(1) = 0

f ′′′(y) =

(
4 ln y + 6

y

)
+ 4

ln y

y
− 2

(
y − 1

y

)(
1

y2

)
− 6

f ′′′(y) =2y−3
[
4y2 ln y − (y − 1) + 3y2 − 3y3

]
g(y) ≡4y2 ln y − (y − 1) + 3y2 − 3y3 → g(1) = 0

g′(y) =8y ln y + 4y − 1 + 6y − 9y2 = 8y ln y + 10y − 9y2 − 1 → g′(1) = 0

g′′(y) =8 ln y + 8 + 10− 18y = 8 ln y − 18y + 18 → g′′(1) = 0

g′′′(y) =8y−1 − 18.

Since λ > 0 → y > 1, g′′′(y) < 0
g′′(1)=0−−−−→ g′′(y) < 0

g′(1)=0−−−−→ g′(y) < 0
g(1)=0−−−−→ g(y) < 0 →

f ′′′(y) < 0
f ′′(1)=0−−−−→ f ′′(y) < 0

f ′(1)=0−−−−→ f ′(y) < 0
f(1)=0−−−−→ f(y) < 0. Thus, ∂(1/µ)

∂λ
< 0 for k = 1.

If k = 2, using Proposition B.4,

∂(1/µ)

∂λ
=
∂
[
(1 + 2λ) (λ+ 1)− 2λ (λ+ 1)2 ln

(
λ+1
λ

)]
∂λ

∂(1/µ)

∂λ
=(1 + 4λ+ 2)− 2

[
(λ+ 1)2 + 2λ(λ+ 1)

]
ln

(
λ+ 1

λ

)
− 2λ2(λ+ 1)

(
−λ−2

)
∂(1/µ)

∂λ
=(6λ+ 5)− 2(λ+ 1)(3λ+ 1) ln

(
λ+ 1

λ

)
∂(1/µ)

∂λ
=λ2

[
5

(
λ+ 1

λ

)(
1

λ

)
+

(
1

λ

)
− 2

(
λ+ 1

λ

)(
λ+ 1

λ
+ 2

)
ln

(
λ+ 1

λ

)]
.

Again, let y ≡ λ+1
λ

→ λ = 1
y−1

. However, in this case let f(y) ≡ 5
(
λ+1
λ

) (
1
λ

)
+

(
1
λ

)
−

2
(
λ+1
λ

) (
λ+1
λ

+ 2
)
ln
(
λ+1
λ

)
= 5y(y − 1) + (y − 1)− 2y(y + 2) ln y → f(1) = 0. As a result,

f ′(y) = 10y − 5 + 1 − 2(2y + 2) ln y − 2(y + 2) = 8(y − 1) − 4(y + 1) ln y → f ′(1) = 0,
f ′′(y) = 8 − 4 ln y − 4

(
y+1
y

)
→ f ′′(1) = 0, and f ′′′(y) = − 4

y
+ 4

y2
= 4

(
1−y
y2

)
. Since

λ > 0 → y > 1, f ′′′(y) < 0
f ′′(1)=0−−−−→ f ′′(y) < 0

f ′(1)=0−−−−→ f ′(y) < 0
f(1)=0−−−−→ f(y) < 0, implying

∂(1/µ)
∂λ

< 0 for k = 2.
If k ̸= 0, 1, 2, using again Proposition B.4,

∂(1/µ)

∂λ
=

∂

[(
1 + 2λ

2−k

)
− k(1−k)/(2−k)

k−λ
[
(λ+1

λ )
k
−1

]
]

∂λ
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∂(1/µ)

∂λ
=

2

2− k
+

[
k(1− k)

2− k

] −
[(

λ+1
λ

)k − 1
]
− λ

[
k
(
λ+1
λ

)k−1 (− 1
λ2

)]
{
k − λ

[(
λ+1
λ

)k − 1
]}2

∂(1/µ)

∂λ
=

2

2− k
+

[
k(1− k)

2− k

] k
λ

(
λ+1
λ

)k−1 −
[(

λ+1
λ

)k − 1
]

{
k − λ

[(
λ+1
λ

)k − 1
]}2

∂(1/µ)

∂λ
=

2
2−k

{
k − λ

[(
λ+1
λ

)k − 1
]}2

+ k(1−k)
2−k

{
k
λ

(
λ+1
λ

)k−1 −
[(

λ+1
λ

)k − 1
]}

{
k − λ

[(
λ+1
λ

)k − 1
]}2 .

Let k ∈ (0, 2) \ {1}, when 2− k > 0. Assume one more time y ≡ λ+1
λ

→ λ = 1
y−1

and, in this
case, let

f(y) ≡2

{
k − λ

[(
λ+ 1

λ

)k

− 1

]}2

− k(k − 1)

{
k

λ

(
λ+ 1

λ

)k−1

−

[(
λ+ 1

λ

)k

− 1

]}

f(y) =2

[
k −

(
yk − 1

y − 1

)]2
− k(k − 1)

[
k(y − 1)yk−1 −

(
yk − 1

)]
→ lim

y→1+
f(y) = 0

f ′(y) =− 4

[
k −

(
yk − 1

y − 1

)][
kyk−1(y − 1)− (yk − 1)

(y − 1)2

]
− k(k − 1)

[
k2yk−1 − k(k − 1)yk−2 − kyk−1

]
f ′(y) =

−4

y − 1

[
k −

(
yk − 1

y − 1

)][
k −

(
yk − 1

y − 1

)
+ k(yk−1 − 1)

]
− k2(k − 1)2(y − 1)yk−2

f ′(y) =
−1

y − 1

{
4

[
k −

(
yk − 1

y − 1

)]2
+ 4

[
k −

(
yk − 1

y − 1

)]
k(yk−1 − 1) + k2(k − 1)2(y − 1)2yk−2

}

f ′(y) =
−1

y − 1

{[
2

(
k −

(
yk − 1

y − 1

))
+ k(yk−1 − 1)

]2
+ k2

[
(k − 1)2(y − 1)2yk−2 − (yk−1 − 1)2

]}

g(y) ≡(k − 1)2(y − 1)2yk−2 − (yk−1 − 1)2 → g(1) = 0

g′(y) =2(k − 1)2(y − 1)yk−2 + (k − 1)2(y − 1)2(k − 2)yk−3 − 2(yk−1 − 1)(k − 1)yk−2

h(y) ≡g(y)

yk−3
= 2(k − 1)2(y2 − y) + (k − 1)2(k − 2)(y − 1)2 − 2(k − 1)(yk − y) → h(1) = 0

h′(y) =2(k − 1)2(2y − 1) + 2(k − 1)2(k − 2)(y − 1)− 2(k − 1)(kyk−1 − 1) → h′(1) = 0

h′′(y) =4(k − 1)2 + 2(k − 1)2(k − 2)− 2k(k − 1)2yk−2 → h′′(1) = 0

h′′′(y) =− 2k(k − 1)2(k − 2)yk−3 = 2(k − 1)2yk−3k(2− k).

Since λ > 0 → y > 1 and k ∈ (0, 2) \ {1} → k(2 − k) > 0, h′′′(y) > 0
h′′(1)=0−−−−→

h′′(y) > 0
h′(1)=0−−−−→ h′(y) > 0

h(1)=0−−−−→ h(y) > 0 → g′(y) > 0
g(1)=0−−−−→ g(y) > 0 → f ′(y) <
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0
limy→1+ f(y)=0
−−−−−−−−−→ f(y) < 0. Hence, ∂(1/µ)

∂λ
< 0 for k ∈ (0, 2) \ {1}.

In short, ∂(1/µ)
∂λ

< 0 for k ∈ (0, 2].

Proposition B.6 For k ̸= 0 and λ > 0, limλ→0+ µ = max{2− k, 1}.

Proof. Let λ > 0. It is sufficient to show limλ→0+(1/µ) = (2 − k)−1 if k < 1, k ̸= 0, and
limλ→0+(1/µ) = 1 if k ≥ 1. If k = 1, from Proposition B.4,

lim
λ→0+

(1/µ) = lim
λ→0+

[
(1 + 2λ)− 1

(λ+ 1) ln
(
λ+1
λ

)
− 1

]
= 1 +

1

1− limλ→0+ ln
(
λ+1
λ

) = 1.

If k = 2, using Proposition B.4,

lim
λ→0+

(1/µ) = lim
λ→0+

[
(1 + 2λ) (λ+ 1)− 2λ (λ+ 1)2 ln

(
λ+ 1

λ

)]
= 1− 2 lim

λ→0+

[
ln
(
λ+1
λ

)
λ−1

]

lim
λ→0+

(1/µ) = = 1− 2 lim
λ→0+

[(
λ

λ+1

)
(−λ−2)

−λ−2

]
= 1− 0 = 1,

where we apply L’Hôpital’s rule in the second line.
Lastly, if k ̸= 0, 1, 2, using again Proposition B.4,

lim
λ→0+

(1/µ) = lim
λ→0+

(1 + 2λ

2− k

)
− k(1− k)/(2− k)

k − λ
[(

λ+1
λ

)k − 1
]
 = 1− k(1− k)/(2− k)

k − limλ→0+

[
(λ+1

λ )
k

λ−1

]

lim
λ→0+

(1/µ) =



1− k(1−k)
k(2−k)

= 1
2−k

, if k < 0

1− k(1−k)/(2−k)

k−limλ→0+

 k(λ+1
λ )

k−1
(−λ−2)

−λ−2

 = 1− k(1−k)
k(2−k)

= 1
2−k

, if k ∈ (0, 1)

1− k(1−k)/(2−k)

k−limλ→0+

 k(λ+1
λ )

k−1
(−λ−2)

−λ−2

 = 1− 0 = 1 , if k > 1, k ̸= 2

,

where we use L’Hôpital’s rule for k ∈ (0, 1) and k > 1, k ̸= 2.

Proposition B.7 For k ̸= 0 and λ > 0, limλ→+∞ µ = 3.

Proof. Let λ > 0. It is sufficient to show limλ→+∞(1/µ) = 1/3 for k ̸= 0. If k = 1, from
Proposition B.4,

lim
λ→+∞

(1/µ) = lim
λ→+∞

[
1 +

2λ (λ+ 1) ln
(
λ+1
λ

)
− 2λ− 1

(λ+ 1) ln
(
λ+1
λ

)
− 1

]
= 1 + lim

λ→+∞

[
2 ln

(
λ+1
λ

)
− 2λ+1

λ(λ+1)

1
λ
ln
(
λ+1
λ

)
− 1

λ(λ+1)

]
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lim
λ→+∞

(1/µ) =1 + lim
λ→+∞

 2
(

λ
λ+1

) (
− 1

λ2

)
− 2λ(λ+1)−(2λ+1)(2λ+1)

λ2(λ+1)2

− 1
λ2 ln

(
λ+1
λ

)
+ 1

λ

(
λ

λ+1

) (
− 1

λ2

)
+ 2λ+1

λ2(λ+1)2


lim

λ→+∞
(1/µ) =1 + lim

λ→+∞

[
− 2λ

λ+1
− 2λ

λ+1
+
(
2λ+1
λ+1

)2
− ln

(
λ+1
λ

)
− λ+1

(λ+1)2
+ 2λ+1

(λ+1)2

]
= 1 + lim

λ→+∞

[ (
2λ+1
λ+1

)2 − 4λ
λ+1

λ
(λ+1)2

− ln
(
λ+1
λ

)]

lim
λ→+∞

(1/µ) =1 + lim
λ→+∞

2
(
2λ+1
λ+1

) (2(λ+1)−(2λ+1)
(λ+1)2

)
− 4(λ+1)−4λ

(λ+1)2

(λ+1)2−2λ(λ+1)
(λ+1)4

−
(

λ
λ+1

) (
− 1

λ2

)


lim
λ→+∞

(1/µ) =1 + lim
λ→+∞

[
2
(
2λ+1
λ+1

)
− 4

λ+1
λ

− λ−1
λ+1

]
= 1 + lim

λ→+∞

 2
(

2(λ+1)−(2λ+1)
(λ+1)2

)
− 1

λ2 − (λ+1)−(λ−1)
(λ+1)2


lim

λ→+∞
(1/µ) =1 + lim

λ→+∞

[
2

(λ+1)2

− 1
λ2 − 2

(λ+1)2

]
= 1− lim

λ→+∞

[
2(

λ+1
λ

)2
+ 2

]
= 1− 2

1 + 2
=

1

3
,

where we apply L’Hôpital’s rule in the second, fourth, and fifth lines.
If k = 2, using Proposition B.4,

lim
λ→+∞

(1/µ) = lim
λ→+∞

[
1+2λ
λ(λ+1)

− 2 ln
(
λ+1
λ

)
λ−1(λ+ 1)−2

]
= lim

λ→+∞

[ 2λ(λ+1)−(2λ+1)(2λ+1)
λ2(λ+1)2

− 2
(

λ
λ+1

) (
− 1

λ2

)
−λ−2(λ+ 1)−2 − 2λ−1(λ+ 1)−3

]

lim
λ→+∞

(1/µ) = lim
λ→+∞

[
2λ(λ+ 1)− (2λ+ 1)(λ+ λ+ 1) + 2λ(λ+ 1)

−1− 2λ
λ+1

]

lim
λ→+∞

(1/µ) = lim
λ→+∞

[
4λ(λ+ 1)− 2λ2 − 2λ(λ+ 1)− (2λ+ 1)

−1− 2λ
λ+1

]

lim
λ→+∞

(1/µ) = lim
λ→+∞

[
2λ(λ+ 1)− 2λ2 − (2λ+ 1)

−1− 2λ
λ+1

]
= lim

λ→+∞

[
1

1 + 2λ
λ+1

]
=

1

1 + 2
=

1

3
,

where we apply L’Hôpital’s rule in the first line.
Finally, If k ̸= 0, 1, 2, using again Proposition B.4,

lim
λ→+∞

(1/µ) = lim
λ→+∞

1 + (
1

2− k

) 2k
λ
− 2

[(
λ+1
λ

)k − 1
]
− k(1−k)

λ2

k
λ2 − 1

λ

[(
λ+1
λ

)k − 1
]


lim

λ→+∞
(1/µ) =1 +

(
1

2− k

)
lim

λ→+∞

 − 2k
λ2 − 2k

(
λ+1
λ

)k−1 (− 1
λ2

)
+ 2k(1−k)

λ3

−2 k
λ3 +

1
λ2

[(
λ+1
λ

)k − 1
]
− 1

λ
k
(
λ+1
λ

)k−1 (− 1
λ2

)


lim
λ→+∞

(1/µ) =1 +

(
2k

2− k

)
lim

λ→+∞

 (
λ+1
λ

)k−1 − 1 + (1−k)
λ(

λ+1
λ

)k − 1 + k
λ

[(
λ+1
λ

)k−1 − 2
]


lim
λ→+∞

(1/µ) =1 +

(
2k

2− k

)
lim

λ→+∞

 −(k − 1)
(
λ+1
λ

)k−2 − (1− k)

−k
(
λ+1
λ

)k−1 − k
[(

λ+1
λ

)k−1 − 2
]
− k

λ
(k − 1)

(
λ+1
λ

)k−2
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lim
λ→+∞

(1/µ) =1 +

[
2k(1− k)

2− k

]
lim

λ→+∞

 (
λ+1
λ

)k−2 − 1

−2k
[(

λ+1
λ

)k−1 − 1
]
− k

λ
(k − 1)

(
λ+1
λ

)k−2


lim

λ→+∞
(1/µ) =1 + lim

λ→+∞

[
2k(1− k)

(
λ+1
λ

)k−3

2k(k − 1)
(
λ+1
λ

)k−2
+ k(k − 1)

(
λ+1
λ

)k−2
+ k

λ
(k − 1)(k − 2)

(
λ+1
λ

)k−3

]

lim
λ→+∞

(1/µ) =1 +
2k(1− k)

2k(k − 1) + k(k − 1)
= 1− 2k(k − 1)

3k(k − 1)
= 1− 2

3
=

1

3
,

where we apply L’Hôpital’s rule in the second, fourth, and sixth lines.

Proposition B.8 For k ∈ (0, 2] and λ > 0, Ã ≡ A/A, Ã > 1, is a continuous, strictly

increasing, and well-defined function of µ if and only if µ ∈ (1, 3) and λ > λ∗(µ), where

λ∗(µ) ≡ argminx∈[0,+∞] limλ→x |µ− µ|.

Proof. Let ĝs be the density of a truncated Lomax distribution with shape parameter k ∈ (0, 2]

and scale parameter λ > 0 defined over s̃(A) ∈ [0, s̃(Ah)], Ah > A > A, with Ĝs being the
respective cumulative distribution function. It is easy to see g̃s(s̃(A)) = ĝs(s̃(A))/Ĝs(s̃(A)) is
the density of a truncated Lomax distribution with the same parameters k ∈ (0, 2] and λ > 0

over the support [0, s̃(A)].23 Given the density g̃s (ĝs), one gets the respective density for A ∈[
A,A

]
(A ∈ [A,Ah]), which we denote by g̃ (ĝ), with cumulative distribution function G̃ (Ĝ).

To get these distributions, note that, for any A∗ ∈ [A,A],

P (A < A∗) =P (A/A∗ < A/A) = P (1− A/A < 1− A/A∗) = P (s̃(A) < s̃(A∗)),

implying G̃(A) = G̃s(s̃(A)) → g̃(A) = g̃s(s̃(A))A/A
2 and Ĝ(A) = Ĝs(s̃(A)) → ĝ(A) =

ĝs(s̃(A))A/A
2. Given these distributions and since g̃s(s̃(A)) = ĝs(s̃(A))/Ĝs(s̃(A)),

ĝ(A)

Ĝ(A)
=

[
ĝs(s̃(A))

Ĝs(s̃(A))

]
A/A2 = g̃s(s̃(A))A/A

2 = g̃(A),

which allows us to use Proposition B.1. Thus, A, A > A is continuous, strictly increasing,
and well defined in µ if and only if µ ∈ (1, µ), where µ is given in Proposition B.4. Since
µ is only a function of Ã ≡ A/A (given k and λ) due to Proposition B.3 and the fact that
S ≡ s̃(A)

λ
+ 1 = 1−Ã−1

λ
+ 1, these features of A also hold for Ã.

From Propositions B.5, B.6, and B.7, the image of µ over λ ∈ (0,+∞) is (max{2− k, 1}, 3)
for k ∈ (0, 2]. Hence, any k ∈ (0, 2] is viable in the sense that there is always λ > 0 such as
µ ∈ (1, µ) if and only if µ ∈ (1, 3). Under such condition, from Proposition B.5, any λ > λ∗(µ)

is viable, where λ∗(µ) ≡ argminx∈[0,+∞] limλ→x |µ− µ| for k ∈ (0, 2], which is well defined

23After all, the Lomax density is the density of a Pareto with the support shifted by λ > 0.
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as µ is a continuous and monotonic function of λ (Proposition B.5).24 Therefore, for k ∈ (0, 2]

and λ > 0, µ ∈ (1, µ) holds if and only if µ ∈ (1, 3) and λ > λ∗(µ).

Figure B.1 illustrates the results of Proposition B.8, plotting Ã against µ for truncated Lo-
max distributions with k = 1 and λ = 10, 1, 0.1, 0.01.

Figure B.1: Technological dispersion Ã ≡ A/A versus average markup µ – Zipf’s law calibra-
tion with k = 1.

We finish this section with a comment about the generalization of Propositions B.5 and B.8
for any k ̸= 0. In Proposition B.5, we show

∂(1/µ)

∂λ
=

2

2− k
+

[
k(1− k)

2− k

] k
λ

(
λ+1
λ

)k−1 −
[(

λ+1
λ

)k − 1
]

{
k − λ

[(
λ+1
λ

)k − 1
]}2

for any k ̸= 0, 1, 2. Consequently, if k = −1,

∂(1/µ)

∂λ
=
2

3

{
1−

− 1
λ

(
λ

λ+1

)2 − (
λ

λ+1

)
+ 1[

−1− λ
(

λ
λ+1

)
+ λ

]2
}

=
2

3

{
1−

1
λ+1

[
(λ+ 1)− λ−

(
λ

λ+1

)][
(λ− 1)− λ2

λ+1

]2
}

∂(1/µ)

∂λ
=
2

3

1−
1

λ+1

[
(λ+1)−λ

λ+1

]
[
(λ−1)(λ+1)−λ2

λ+1

]2
 =

2

3

{
1−

1
λ+1

(
1

λ+1

)( −1
λ+1

)2
}

=
2

3
(1− 1) = 0.

24Note µ = µ under λ = λ∗(µ) ∈ (0,+∞) except for k ∈ (0, 1) and µ ∈ (1, 2 − k], when λ∗(µ) = 0 as µ is
strictly increasing in λ > 0 with µ ∈ (2− k, 3).
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Moreover, numerical results using this expression, such as those shown in Figure B.2, suggest
∂(1/µ)
∂λ

> 0 for k < −1 and ∂(1/µ)
∂λ

< 0 for k ∈ (−1, 0)∪(2,+∞). Assuming these results indeed
hold, one can generalize Proposition B.5 for any k ̸= 0: for λ > 0, ∂µ

∂λ
> 0 if k > −1, k ̸= 0,

∂µ
∂λ

= 0 if k = −1, and ∂µ
∂λ

< 0 if k < −1.

Figure B.2: ∂(1/µ)
∂λ

versus k, k ̸= 0, 1, 2.

Given this (possible) new Proposition B.5, one can also generalize Proposition B.8: for
k ̸= 0 and λ > 0, Ã ≡ A/A, Ã > 1, is continuous, strictly increasing, and well defined in µ if
and only if (i) µ ∈ (1, 3), (ii) µ = 3 and k ≤ −1, or (iii) µ > 3 and k < 2− µ < −1, with any
viable λ, that is, with

λ ∈


(0, λ∗(µ)) , if k < −1

(0,+∞) , if k = −1

(λ∗(µ),+∞) , if k > −1, k ̸= 0

,

where λ∗(µ) ≡ argminx∈[0,+∞] limλ→x |µ− µ| is now defined for any k /∈ {−1, 0}.25 After all,
in this case, from this (possible) new Proposition B.5 and Propositions B.6 and B.7, the image

25Here, given this (possible) new Proposition B.5, µ = µ under λ∗(µ) ∈ (0,+∞) except in two cases. The
first exception would be k < −1 and µ ∈ (1, 3], when λ∗(µ) = +∞ as µ is strictly decreasing in λ > 0 with
µ ∈ (3, 2− k). The second exception would be k ∈ (−1, 1) \ {0} and µ ∈ (1, 2− k], when λ∗ = 0 as µ is strictly
increasing in λ > 0 with µ ∈ (2− k, 3).
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of µ over λ ∈ (0,+∞) is 
(3, 2− k) , if k < −1

[3, 3] , if k = −1

(max{2− k, 1}, 3) , if k > −1, k ̸= 0

,

implying any k ̸= 0 is viable if µ ∈ (1, 3); if µ = 3, k ≤ −1; if µ > 3, µ < 2 − k → k <

2− µ < −1. And, given a viable k, from this (possible) generalization of Proposition B.5, one
easily gets the viable λs shown in the statement of the (possible) new Proposition B.8.
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C Zipf’s law calibration

In this section, we outline the calibration strategy for the case where firm market share follows a
truncated Lomax distribution. We begin by discussing this alternative distributional assumption
and its relationship with Zipf’s law. Finally, we present the two-stage calibration procedure,
which is similar to the one discussed in Section 3.3 for the baseline model. We do not elaborate
on the computation of the target moments using real-world data, as it can be done in the same
way as before (see Section 3.2 for details).

C.1 Distributional assumption and Zipf’s law

Suppose s̃(A) ≡ 1 − A/A = s(A)
η/q

∈
[
0, s̃(A)

]
=

[
0, 1− Ã−1

]
is truncated Lomax distributed

with shape parameter k ̸= 0 and scale parameter λ > 0, or equivalently, (s̃(A)+λ) ∈ [λ, s̃(A)+

λ] is truncated Pareto distributed with shape parameter k ̸= 0. Thus, the density of s̃(A) is
g̃s(s̃(A)) = k

[
λk(s̃(A)+λ)k

(s̃(A)+λ)k−λk

]
(s̃(A) + λ)−k−1, which is shown in Figure C.1 for k = 1 and

λ = 0.2, 0.4, 1, with s̃(A) = 1/3.26

Figure C.1: Truncated Lomax density with k = 1 and support [0, 1/3].

For k ≈ 1 and λ ≈ 0, firm market share is approximately truncated Pareto distributed with
26Alternatively, we could have imposed the distribution of θi = Li/L = Ki/K, when firm size would be

measured by number of employees (or capital stock) instead of sales. Since we need Ea

[
(A/A)j

]
for j ∈ N \ {0}

to compute the target moments, we should recover A/Ai from θi. Given Equation (2) for the continuous model
and (A.1), θi = AΩ

A (η/q)
[
(A/Ai)− (A/Ai)

2
]

and thus θi uniquely identifies A/Ai if and only if Ã ≡ A/A ≤ 2.

Thus, under this alternative strategy, one must impose Ã ≤ 2, which may not hold empirically.
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shape parameter k ≈ 1, consistent with Zipf’s law, particularly away from the bounds of the
support. After all,

P (s̃(A) ≥ x) =

∫ s̃(A)

x

g̃s(y)dy =
(x+ λ)−k − (s̃(A) + λ)−k

λ−k − (s̃(A) + λ)−k
(C.1)

∂ lnP (s̃(A) ≥ x)

∂ lnx
=

−k(x+ λ)−k−1x

(x+ λ)−k − (s̃(A) + λ)−k
= −k

 x
x+λ

1−
(

x+λ
s̃(A)+λ

)k

 , (C.2)

where we use in the last line ∂x
∂ lnx

= ∂eln x

∂ lnx
= elnx = x.27 As a result, (i) ∂ lnP (s̃(A)≥x)

∂ lnx
→ 0

as x → 0+, (ii) ∂ lnP (s̃(A)≥x)
∂ lnx

→ −∞ as x → s̃(A)−, and (iii) ∂ lnP (s̃(A)≥x)
∂ lnx

≈ −k
(

x
x+λ

)
near the beginning of the support, when x+λ

s̃(A)+λ
≈ 0. Consequently, if k ≈ 1 and λ ≈ 0,

∂ lnP (s̃(A)≥x)
∂ lnx

≈ −1 for x near the beginning of the support, as in Zipf’s law.
It is worth mentioning these deviations from Zipf’s law near the bounds of the support

are not a shortcoming of the Lomax distribution. It would occur for any continuous truncated
distribution. On the one hand, there is no distribution satisfying Zipf’s law at x = 0, since
P (s ≥ x) = cx−k with k ≈ 1 is only well defined for x ̸= 0, implying ∂ lnP (s̃(A)≥x)

∂ lnx
should

deviate from -1 sufficiently close to x = 0 as P (s̃(A) ≥ x) is a continuous function. On the
other hand, to evaluate the behavior near the end of the support, assume, by contradiction,
P (s ≥ x) = cx−k for s ∈ [s, s] ∈ (0,+∞) and k ≈ 1, with c > 0 as P (s ≥ x) > 0 at least
for x = s. In this case, P (s ≥ s) = cs−k > 0, which is absurd as s ∈ [s, s] ∈ (0,+∞) and
thus P (s ≥ s) = 0. Therefore, no truncated continuous distribution satisfies Zipf’s law over a
strictly positive support. A corollary of this result is that any distribution should deviate from
Zipf’s law near the end of its positive support. After all, if that were not true, by truncating
this distribution from below, we would obtain a truncated continuous distribution over a narrow
strictly positive support that satisfies Zipf’s law, contradicting the previous result.

Under this distributional assumption, we demonstrated in Proposition B.2 that

Ea

[
(s̃(A) + λ)j

]
=


kλj

j−k

(
Sj−Sk

Sk−1

)
, if j ̸= k

kλk
(

Sk lnS
Sk−1

)
, if j = k

(C.3)

for k ̸= 0, λ > 0, and j ∈ N \ {0}, where S ≡ s̃(A)
λ

+ 1.

C.2 Two-stage calibration procedure

We essentially follow the same two-stage procedure presented in Section 3.3 to quantify the
model, but use (C.3) and the fact that s̃(A) ≡ 1 − A/A → Ea ((A/A)

j) = Ea ((1− s̃(A))j),

27From (C.1), P (s(A) ≥ x) = P
(
s̃(A) ≥ x

η/q

)
= (x+λ̃)−k−(s(A)+λ̃)−k

λ̃−k−(s(A)+λ̃)−k
for λ̃ ≡ λ (η/q), meaning s(A) ∈

[0, s(A)] is truncated Lomax distributed with shape parameter k ̸= 0 and scale parameter λ̃ > 0.
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instead of Equation (9). In the first stage, we find A and A by matching aggregate TFP AΩ and
average markup µ. From Proposition B.8, given k ∈ (0, 2], a unique solution to this problem ex-
ists if and only if µ ∈ (1, 3) and λ > λ∗(µ), where λ∗(µ) ≡ argminx∈[0,+∞] limλ→x |µ− µ| and
µ ≡ limA→+∞ µ is computed from (10) in Proposition B.4. Analogous to the baseline Pareto
case, for a given distributional shape, allocative efficiency Ω is only a function of µ. Figure
C.2 plots this function for truncated Lomax distributions with k = 1 and λ = 10, 1, 0.1, 0.01,
showing several noteworthy results. First, as in the baseline case, Ω is strictly decreasing in
µ = 1−α

LS
, with Ω → 1− as µ → 1+. Second, given a time series of µ, a higher λ results in a

higher and less volatile estimated Ω.

Figure C.2: Allocative efficiency Ω versus average markup µ – Zipf’s law calibration with
k = 1.

In the second stage, we set k ∈ (0, 2], k ≈ 1, which is viable as µ ∈ (1, 3) in Brazil, and
search for a time-invariant λ that minimizes the distance to the normalized NaHHIL.28 We
limit the search to λ > λ∗(max{µ}), where max{µ} is the maximum µ in its time series.29

Analogous to the baseline Pareto case, TFP data are not required to estimate Ω, not even indi-
rectly through λ. They are used solely to pin down A and A. Therefore, once again, the residual
from the production function is not the TFP AΩ itself, but only its technology component A.

28We also jointly estimate k ̸= 0 and λ > 0 in the second stage. Since k ∈ (0, 2] may not hold in this case, we
rely on a (possible) generalization of Proposition B.8 to any k ̸= 0 discussed at the end of Appendix B.2.

29Given µ ∈ (1, 3) and k ∈ (0, 2], there is a solution for the first-stage algorithm if and only if λ > λ∗(µ). As
a result, λ > max{λ∗(µ)} ensures there is a solution for this algorithm in each period, with max{λ∗(µ)} being
the maximum λ∗(µ) in its time series. However, since µ is strictly increasing in λ for k ∈ (0, 2] (Proposition B.5),
max{λ∗(µ)} = λ∗(max{µ}).
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