Corporate Dollar Debt and Depreciations: All's well that ends well?

Julián Caballero (Inter-American Investment Corporation)

Disclaimer: The findings, interpretations, and conclusions expressed in this presentation are entirely those of the author. They do not necessarily represent the views of the Inter-American Development Bank Group, their Executive Directors, or the countries they represent

This paper

Question:

 Explores the effect of depreciations on firms CAPEX when firms hold foreign-currency debt

Paper in a nutshell:

- Exploits newly-built database of stocks of FC bonds (FCB) for ~7,000 firms across 15 EMs, period 2000-2015
- Regression analysis based on FE models
- Alternative identification using market's tamper tantrum
- Find significant negative effects of depreciations
- A depreciation of 10% is associated with CAPEX to assets 0.3-0.5 percentage points lower for firms exposed to FCB
- Effect seems stronger for one-year-ahead CAPEX

Literature

- Bleakly and Cowan (2008) cross-country study exploring balance sheet effects of depreciations
 - Focused on experience of LAC firms after crises of 1990s
 - Find no balance sheet effects
 - Rationalize the result: firms match/hedge FC exposures
- A few other country-specific studies
 - Find mixed results
 - Firms do not seem to hedge their currency risk with financial instruments
- Big limitation from lack of data on currency composition of firms balance sheets

Empirical strategy

 Model firm CAPEX as function of lagged exposure to FCB interacted with current depreciation:

$$y_{i,s,c,t} = \alpha + \beta \left(FXB_{i,s,c,t-1} \times \Delta e_{c,t} \right) + \theta FXB_{i,s,c,t-1} + \Gamma' X_{i,s,c,t-1}$$
$$+ \psi_* + \varepsilon_{i,s,c,t}$$

- Set of fixed effects in preferred model are country-sector-year
- Only determinants of CAPEX not absorbed by FEs are firm-level specific, which are controlled for with vector of lagged firm-level covariates

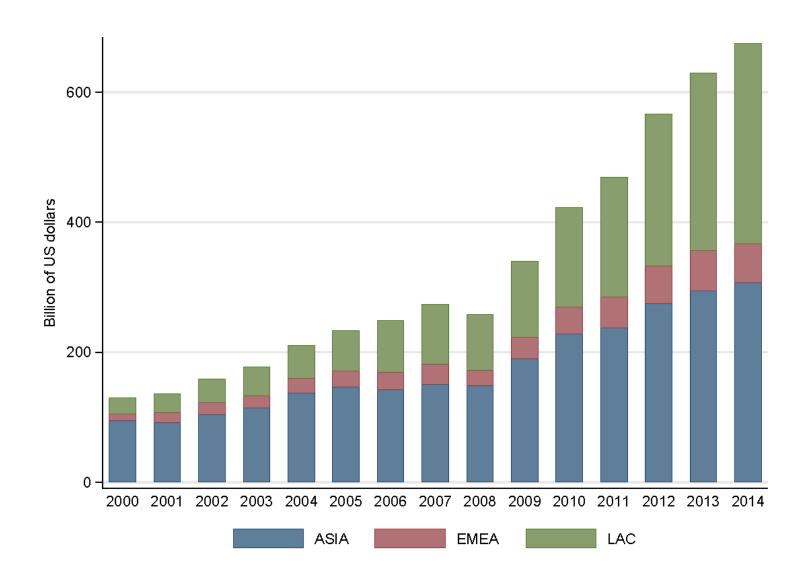
Empirical strategy

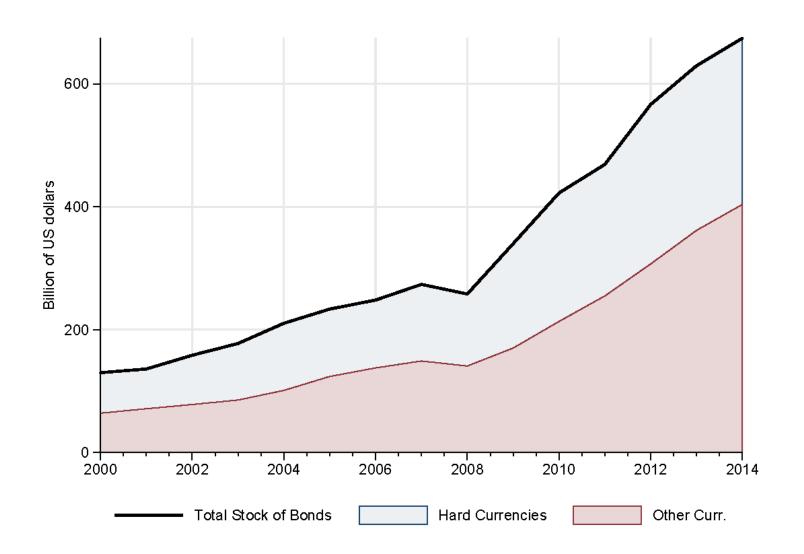
- Dependent variable: CAPEX to assets (flow/stock)
- FCB: stock of foreign-currency bonds (or dummy)
- Depreciation: bilateral RER against the USD
 - Adjusts for asset inflation, pass-through inflation
- All firm-level controls are scaled by assets
 - Ratios and dummy variables are not transformed
- All models estimated by OLS. Alternative models estimated are Tobit (CAPEX cannot be negative)

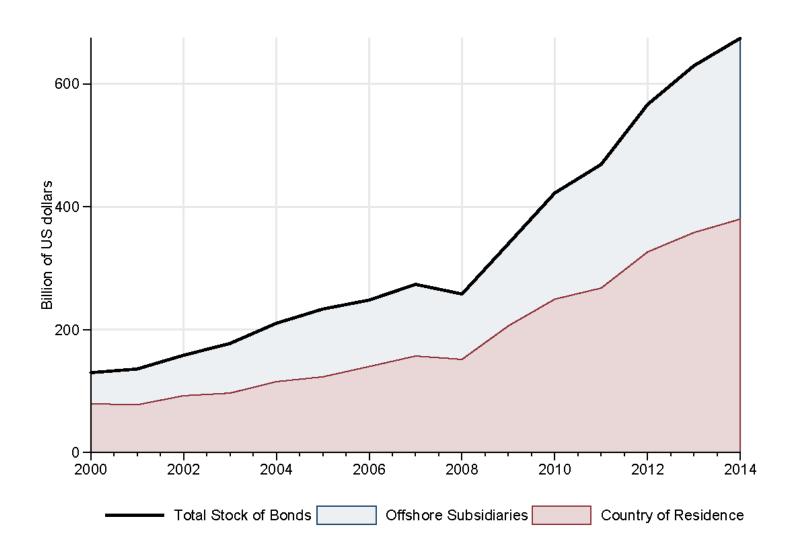
Empirical strategy

- The question is whether firms that have a larger exposure to FCB have lower CAPEX than their peers
 - Compare cross-section differences in CAPEX among firms, and hence C×S×T fixed-effects
 - No firm-level FEs
 - Firm-level covariates capture determinants of possible differences in CAPEX among firms, rather than capture firm dynamics of investment decisions

Data: Universe of firms


- Universe of listed non-financial, non-utilities, active firms, headquartered in the largest 24 EMs
 - Exclude countries with sovereign defaults
 - Exclude countries with less than 15 corporate issuers
 - Drop China (because mandate of SOEs)
- After data cleaning, sample is unbalanced panel of 6,917 firms from 15 EMs
- Data sources:
 - Corporate bonds: Thomson Reuters Eikon Premium
 - Firms balance sheets: Thomson Reuters Worldscope


Data: Final Sample


Region	Country	N. of firms
ASIA	India	2,032
ASIA	Indonesia	342
ASIA	Korea	1,592
ASIA	Malaysia	726
ASIA	Philippines	138
ASIA	Thailand	451
EMEA	Israel	256
EMEA	Poland	380
EMEA	South Africa	219
EMEA	Turkey	246
LAC	Brazil	195
LAC	Chile	128
LAC	Colombia	38
LAC	Mexico	91
LAC	Peru	83

- Novel data
- Stocks are computed using all fixed-income securities issued by a firm by itself or offshore
 - Measuring stocks of bonds on a nationality basis is very important (Shin (2014); Turner (2014))
 - In Brazil issuance may be 30-40% larger when accounting for offshore issuance
- Total of 1,809 issuers in final sample (nationality)
 - Double-check association (conservative approach)
- A total of 29,078 securities

- A total of 29,078 securities
 - Bonds, notes, and commercial paper make up 86%
 - 89% of the securities were issued after year 1999
 - 12% of securities have maturities of less than one year
 - Average maturity at issuance is 4 years
 - 80% of the bonds are bullet bonds
- Computing stocks from issuance data:
 - Compute outstanding value as Dec-31 by adjusting for:
 - Amortizations, early repayments, call options exercised, defaults, cancellations, conversions, liquidations, repurchases
 - Convert gross proceeds to currency in balance sheet using FX Dec-31
 - Classify bonds into currencies: USD, EUR, GBP, JPY, CHF

Data: Firm-level controls

- Two sets of firm-level covariates:
 - Strength and performance:
 - Leverage, debt to equity, debt maturity
 - Earnings, profitability
 - Interest expense
 - Cash holdings
 - Size
 - Tangible assets
 - Operational hedges:
 - Foreign ownership
 - Exporter status
 - Foreign listing
- Normalize to t-1 assets (flow: average t and t-1)
- Winsorize at 2% and 98%

Baseline results

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
		FXB scale	d by assets		I[FX	B=1] if FXE	$8 \ge 25^{th} \text{ perce}$	entile
$\mathrm{FXB}_{t-1} \times \triangle e_t$	-0.249 (0.092)***	-0.259 (0.092)***	-0.244 (0.092)***	-0.256 (0.091)***	-0.044 (0.019)**	-0.046 (0.019)**	-0.043 (0.019)**	-0.044 (0.019)**
FXB_{t-1}	0.040 (0.014)***	0.042 (0.014)***	0.042 (0.014)***	0.046 (0.014)***	0.008 (0.003)***	0.009 (0.003)***	0.009 (0.003)***	0.010 (0.003)***
$Leverage_{t-1} \times \triangle e_t$			-0.012 (0.008)	-0.009 (0.017)			-0.012 (0.008)	-0.009 (0.016)
$Leverage_{t-1}$			-0.006 (0.001)***	-0.009 (0.001)***			-0.006 (0.001)***	-0.009 (0.001)***
Country-Sector-Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Obs	72,419	72,518	72,407	$72,\!506$	71,806	71,893	71,794	71,881
$Adj./Pseudo R^2$	0.088	-0.049	0.089	-0.049	0.087	-0.048	0.088	-0.049
Method	OLS	Tobit	OLS	Tobit	OLS	Tobit	OLS	Tobit

Controlling for firm-level covariates

	(1)	(2)	(3)	(4)	(5)
		FXB scale	d by assets		I[FXB=1,0]
$FXB_{t-1} \times \triangle e_t$	-0.174	-0.174	-0.184	-0.179	-0.027
	(0.087)**	(0.087)**	(0.089)**	(0.088)**	(0.019)
Included controls in X_{t-1} :	Only	\mathbf{X}_{t-1}	\mathbf{X}_{t-}	$_1 \times \triangle e_t$	
Firm strength and performance	Yes	Yes	Yes	Yes	Yes
Operational hedges	No	Yes	No	Yes	Yes
Country-Sector-Year FE Obs Adj./Pseudo R^2 Method	Yes	Yes	Yes	Yes	Yes
	61,830	61,830	61,830	61,830	61,222
	0.179	0.179	0.179	0.180	0.178
	OLS	OLS	OLS	OLS	OLS

One-year-ahead CAPEX

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
		FXB scaled by assets				I[FXB=1] if FXB $\geq 25^{th}$ percentile				
$\text{FXB}_{t-1} \times \triangle e_t$	-0.326 (0.092)***	-0.347 (0.093)***	-0.268 (0.090)***	-0.274 (0.089)***	-0.061 (0.018)***	-0.064 (0.018)***	-0.046 (0.018)**	-0.047 (0.018)***		
Including $\mathbf{X}_{t-1} \times \triangle e_t$?	No	No	Yes	Yes	No	No	Yes	Yes		
Country-Sector-Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Obs	$65,\!514$	$65,\!605$	55,980	56,080	64,914	64,993	$55,\!385$	$55,\!476$		
$Adj./Pseudo R^2$	0.084	-0.046	0.157	-0.080	0.083	-0.045	0.156	-0.079		
Method	OLS	Tobit	OLS	Tobit	OLS	Tobit	OLS	Tobit		

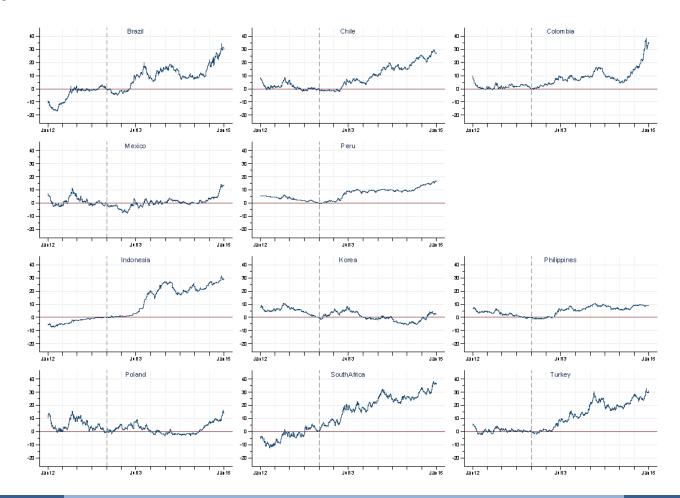
Concerns about OVB and spurious correlation

- Not an experimental design
- Given C×S×T fixed-effects, only source of variation not captured in model is firm-specific
- Concerns of OVB tackled introducing 12 covariates and their interactions with depreciation
- However, one cannot be sure of modeling the true DGP. Alternatives:
 - Using machine learning methods to model covariates and their functional form more flexibly
 - Randomization inference

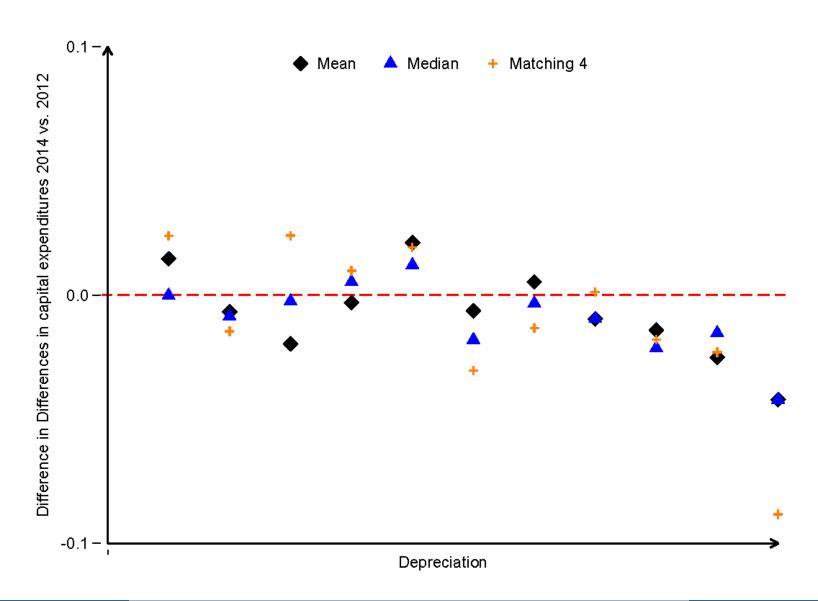
Double-Step LASSO (caveat)

	(1)	(2)	(3)	(4)	(5)	(6)		
	FXE	scaled by assets		I[FXB=1] if FXB $\geq 25^{th}$ percentile				
	Model with $\mathbf{X}_{t-1}; \mathbf{X}_{t-1} \times \triangle e_t$	All covariates; all interactions	Double-Step Lasso	Model with $\mathbf{X}_{t-1}; \mathbf{X}_{t-1} \times \triangle e_t$	All covariates; all interactions	Double-Step Lasso		
Dependent varial	ble: $CAPEX_t$							
$\mathrm{FXB}_{t-1} \times \triangle e_t$	-0.179 (0.088)**	-0.141 (0.086)	-0.125 (0.090)	-0.027 (0.019)	-0.019 (0.019)	-0.016 (0.018)		
Covariates Obs Adj./Pseudo \mathbb{R}^2	26 61,830 0.180	149 61,830 0.214	9 62,202 0.203	26 61,222 0.178	$ \begin{array}{c} 149 \\ 61,222 \\ 0.213 \end{array} $	$ \begin{array}{r} 12 \\ 61,594 \\ 0.202 \end{array} $		
Dependent varial	ble: $CAPEX_{t+1}$							
$FXB_{t-1} \times \triangle e_t$	-0.268 (0.090)***	-0.233 (0.095)**	-0.219 (0.102)**	-0.046 (0.018)**	-0.028 (0.018)	-0.034 (0.018)*		
Covariates Obs Adj./Pseudo R^2	$26 \\ 55,980 \\ 0.157$	149 55,980 0.189	$ \begin{array}{r} 8 \\ 56,619 \\ 0.171 \end{array} $	26 55,385 0.156	149 55,385 0.187	$ \begin{array}{r} 11 \\ 56,024 \\ 0.169 \end{array} $		

Randomization inference (caveat)


20/30

Robustness checks


	(1)	(2)	(3)	(4)	(5)	(6)	(7)
		ude ΣX_{t-1}	Normalize by $assets_{t-1}$		Adjust by asset disposals	NI	ER
Dependent variable: CAP	EX_t						
$FXB_{t-1} \times \triangle e_t$	-0.093 (0.056)*	-0.097 (0.056)*	-0.412 (0.201)**	-0.426 (0.203)**	-0.228 (0.096)**	-0.148 (0.081)*	-0.154 (0.080)*
Obs Adj./Pseudo \mathbb{R}^2	64,676 0.335	64,770 -0.176	72,434 0.097	72,533 -0.072	57,511 0.089	72,419 0.088	72,518 -0.049
Dependent variable: CAP	EX_{t+1}						
$FXB_{t-1} \times \triangle e_t$	-0.215 (0.065)***	-0.234 (0.067)***	-0.643 (0.244)***	-0.675 (0.254)***	-0.351 (0.099)***	-0.245 (0.082)***	-0.260 (0.082)***
Obs Adj./Pseudo \mathbb{R}^2	64,675 0.335	64,769 -0.176	$65,\!526 \\ 0.094$	65,617 -0.065	52,721 0.084	65,514 0.084	65,605 -0.046
Country-Sector-Year FE Method	Yes OLS	Yes Tobit	Yes OLS	Yes Tobit	Yes OLS	Yes OLS	Yes Tobit

Alternative identification: DiD

Use market's tamper tantrum of 2013 as a natural experiment

- Use market's tamper tantrum of 2013 as a natural experiment
- Compare difference in CAPEX in 2014 vs. 2012 of firms with FXB exposures as-of-end of 2012 with those firms that had no FXB exposure

Estimate simple DiD:

$$y_{i,s,c,t} = \alpha + \psi_i + \gamma T_t + \delta \left(T_t \times FXB_i^{12} \right) + \xi_{i,s,c,t}$$

Interact with intensity of depreciation 2014-2012:

$$y_{i,s,c,t} = \alpha + \psi_i + \gamma T_t + \tilde{\delta} \left(T_t \times \text{FXB}_i^{12} \right) + \phi \left(T_t \times \Delta e_c^{12-14} \right)$$
$$+ \varphi \Delta e_c^{12-14} + \lambda \left(T_t \times \text{FXB}_i^{12} \times \Delta e_c^{12-14} \right) + \varepsilon_{i,s,c,t}$$

- Plug country and sector dummies $\times T_t$ (i.e., allow differences in post period by country and sector)
- Control for firm-level covariates (2012 levels)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
			I[FXB=1] i	f FXB $\geq 25^{th}$	percentile				
$T \times FXB$	-0.005 (0.002)**	-0.004 (0.000)***	-0.008 (0.003)***						
$T \times \text{FXB} \times \Delta e$				-0.165 (0.046)***	-0.103 (0.061)*	-0.092 (0.038)**	-0.240 (0.049)***	-0.202 (0.058)***	-0.160 (0.053)***
Fixed effects interacted	l with T ?								
Country-Sector FE	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes
Sector FE	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes
Country FE	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes
Including X_i^{12} ?	No	No	Yes	No	No	Yes	No	No	Yes
Obs	2,699	2,699	2,674	2,699	2,699	2,674	2,695	2,695	2,670
Adj. R ²	0.001	0.036	0.069	0.004	0.036	0.069	0.004	0.037	0.069

Placebo regression with 2012-2010 comparison yield non-significant coefficients

Discussion about earnings and hedging

- Bleakley and Cowan (2008) rationalized their result of no balance sheet effect by noting firms hedge their foreign currency exposures. However:
 - Regressions on t ant t+1 earnings do not back this idea
 - Micro data for CHL, COL, BRA shows that a large proportion of non-exporters hold FC debt
 - Most firms do not use financial hedges
- Bringing hypothesis to the data using a triple DiD approach:
 - If firms effectively match/hedge FC liabilities, then exporters with FCB should increase their CAPEX facing a depreciation compared to non-FCB exporters

3 DiD: Exporters and FCB hedges

$$\begin{aligned} y_{i,s,c,t} = & \alpha + \delta_0 \mathsf{FXB}_{i,s,c,t-1} + \delta_1 \mathsf{EXP}_{i,s,c,t-1} + \delta_2 \left(\mathsf{FXB}_{i,s,c,t-1} \times \mathsf{EXP}_{i,s,c,t-1} \right) \\ & + \delta_3 \left(\mathsf{FXB}_{i,s,c,t-1} \times \Delta e_{c,t} \right) + \delta_4 \left(\mathsf{EXP}_{i,s,c,t-1} \times \Delta e_{c,t} \right) \\ & + \delta_5 \left(\mathsf{FXB}_{i,s,c,t-1} \times \Delta e_{c,t} \times \mathsf{EXP}_{i,s,c,t-1} \right) \\ & + \psi_c + \psi_s + \psi_t + \psi_{c,t} + \psi_{s,t} + \psi_{c,s} + \zeta_{i,s,c,t} \end{aligned}$$

3 DiD: Exporters and FCB hedges

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
		CA	PEX_t			CAPI	EX_{t+1}	
	FXB scale	d by assets	I[FXI	B=1,0]	FXB scaled	FXB scaled by assets		=1,0]
	Δe	$I[\Delta e=1,0]$	Δe	$I[\Delta e=1,0]$	Δe	$I[\Delta e=1,0]$	Δe	$I[\Delta e=1,0]$
$FXB_{t-1} \times \Delta e_t$	-0.084 (0.104)	-0.045 (0.033)	-0.028 (0.011)**	-0.011 (0.004)**	-0.212 (0.066)***	-0.074 (0.027)**	-0.042 (0.014)***	-0.013 (0.006)*
$EXP_{t-1} {\times} \Delta e_t$	0.008 (0.010)	0.007 (0.003)**	0.006 (0.011)	0.006 (0.003)*	0.004 (0.010)	0.005 (0.003)	0.003 (0.010)	0.005 (0.003)
$FXB_{t-1} \times \Delta e_t \times EXP_{t-1}$	-0.236 (0.129)*	0.001 (0.049)	-0.017 (0.017)	0.001 (0.008)	-0.164 (0.145)	0.047 (0.033)	-0.026 (0.020)	0.007 (0.006)
Country-Sector FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Country-Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Sector-Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Sector FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Country FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Obs	72,518	72,518	71,893	71,893	65,605	65,605	64,993	64,993
Adj. R ²	0.090	0.090	0.089	0.089	0.087	0.087	0.086	0.086

Usage of Financial Derivatives and Foreign-Currency Debt in BRA, CHL, COL

	(1)	(2)	(3)	(4)	(5)
	Brazil	Chile	Colombia all firms	Colombia med. & large	Colombia listed
Panel A. Statistics for full sample					
Number of firms	100	217	39,873	563	60
Percentage of firms with FX debt	85	77.0	17.5	52.0	45
FX debt to total liabilities	16.3	18.3	3.3	11.0	12.5
Prob(derivatives=1 FXB=1)	100	70.1	18.8	37.2	52.9
Prob(net forward long =1 FX debt=1)	43.8	n.a.	22.7	30.7	43.1
Prob(exporter=1 FXD=1)	100	43.1	49.0	72.9	72.5
Panel B. Statistics for firms with stocks	of foreign-curi	rency bonds (F	(XB)		
Number of firms with FXB	52	17	9	9	1
FX bonds to total FX debt	28.0	11.8	0.09	1.5	0.2
Prob(FX loans=1 FXB=1)	83.0	71.7	78.0	82.1	100
FX debt to total liabilities if FXB = $1 (\%)$	26.7	38.6	51.8	51.0	43.0
Years in sample	2003-2014	2009-2014	2005-2013	2005-2013	2005-2013

Concluding remarks

 Cross-country study of non-crises times in 15 EMs indicate that currency depreciations have deleterious effects on firm investment when firms are exposed to foreign-currency debt

Thanks!

Julián Caballero julianc@iadb.org